File size: 14,384 Bytes
2e5e07d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import os
import sys
try:
    import utils
    from diffusion import create_diffusion
except:
    sys.path.append(os.path.split(sys.path[0])[0])
    import utils
    from diffusion import create_diffusion
import argparse
import torchvision
from PIL import Image
from einops import rearrange
from models import get_models
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from utils import mask_generation_before
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from vlogger.videofusion import fusion
from vlogger.videocaption import captioning
from vlogger.videoaudio import make_audio, merge_video_audio, concatenate_videos
from vlogger.STEB.model_transform import ip_scale_set, ip_transform_model, tca_transform_model
from vlogger.planning_utils.gpt4_utils import (readscript, 
                                               readtimescript, 
                                               readprotagonistscript, 
                                               readreferencescript, 
                                               readzhscript)


def auto_inpainting(args, 
                    video_input, 
                    masked_video, 
                    mask, 
                    prompt, 
                    image, 
                    vae, 
                    text_encoder, 
                    image_encoder, 
                    diffusion, 
                    model, 
                    device,
                    ):
    image_prompt_embeds = None
    if prompt is None:
        prompt = ""
    if image is not None:
        clip_image = CLIPImageProcessor()(images=image, return_tensors="pt").pixel_values
        clip_image_embeds = image_encoder(clip_image.to(device)).image_embeds
        uncond_clip_image_embeds = torch.zeros_like(clip_image_embeds).to(device)
        image_prompt_embeds = torch.cat([clip_image_embeds, uncond_clip_image_embeds], dim=0)
        image_prompt_embeds = rearrange(image_prompt_embeds, '(b n) c -> b n c', b=2).contiguous()
        model = ip_scale_set(model, args.ref_cfg_scale)
        if args.use_fp16:
            image_prompt_embeds = image_prompt_embeds.to(dtype=torch.float16)
    b, f, c, h, w = video_input.shape
    latent_h = video_input.shape[-2] // 8
    latent_w = video_input.shape[-1] // 8

    if args.use_fp16:
        z = torch.randn(1, 4, 16, latent_h, latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
        masked_video = masked_video.to(dtype=torch.float16)
        mask = mask.to(dtype=torch.float16)
    else:
        z = torch.randn(1, 4, 16, latent_h, latent_w, device=device) # b,c,f,h,w

    masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
    masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
    masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
    mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
    masked_video = torch.cat([masked_video] * 2)
    mask = torch.cat([mask] * 2)
    z = torch.cat([z] * 2)
    prompt_all = [prompt] + [args.negative_prompt]

    text_prompt = text_encoder(text_prompts=prompt_all, train=False)
    model_kwargs = dict(encoder_hidden_states=text_prompt, 
                        class_labels=None, 
                        cfg_scale=args.cfg_scale,
                        use_fp16=args.use_fp16,
                        ip_hidden_states=image_prompt_embeds)
    
    # Sample images:
    samples = diffusion.ddim_sample_loop(model.forward_with_cfg, 
                                         z.shape, 
                                         z, 
                                         clip_denoised=False, 
                                         model_kwargs=model_kwargs, 
                                         progress=True, 
                                         device=device,
                                         mask=mask, 
                                         x_start=masked_video, 
                                         use_concat=True,
                                         )
    samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
    if args.use_fp16:
        samples = samples.to(dtype=torch.float16)

    video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
    video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
    return video_clip


def main(args):
    # Setup PyTorch:
    if args.seed:
        torch.manual_seed(args.seed)
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    seed_everything(args.seed)

    model = get_models(args).to(device)
    model = tca_transform_model(model).to(device)
    model = ip_transform_model(model).to(device)
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
    if args.use_compile:
        model = torch.compile(model)

    ckpt_path = args.ckpt 
    state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema']
    model_dict = model.state_dict()
    pretrained_dict = {}
    for k, v in state_dict.items():
        if k in model_dict:
            pretrained_dict[k] = v
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)

    model.eval()  # important!
    diffusion = create_diffusion(str(args.num_sampling_steps))
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device)
    text_encoder = text_encoder = TextEmbedder(args.pretrained_model_path).to(device)
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path).to(device)
    if args.use_fp16:
        print('Warnning: using half percision for inferencing!')
        vae.to(dtype=torch.float16)
        model.to(dtype=torch.float16)
        text_encoder.to(dtype=torch.float16)
    print("model ready!\n", flush=True)
    
    
    # load protagonist script
    character_places = readprotagonistscript(args.protagonist_file_path)
    print("protagonists ready!", flush=True)

    # load script
    video_list = readscript(args.script_file_path)
    print("video script ready!", flush=True)
    
    # load reference script
    reference_lists = readreferencescript(video_list, character_places, args.reference_file_path)
    print("reference script ready!", flush=True)
    
    # load zh script
    zh_video_list = readzhscript(args.zh_script_file_path)
    print("zh script ready!", flush=True)
    
    # load time script
    key_list = []
    for key, value in character_places.items():
        key_list.append(key)
    time_list = readtimescript(args.time_file_path)
    print("time script ready!", flush=True)
    

    # generation begin
    sample_list = []
    for i, text_prompt in enumerate(video_list):
        sample_list.append([])
        for time in range(time_list[i]):
            if time == 0:
                print('Generating the ({}) prompt'.format(text_prompt), flush=True)
                if reference_lists[i][0] == 0 or reference_lists[i][0] > len(key_list):
                    pil_image = None
                else:
                    pil_image = Image.open(args.reference_image_path[reference_lists[i][0] - 1])
                    pil_image.resize((256, 256))
                video_input = torch.zeros([1, 16, 3, args.image_size[0], args.image_size[1]]).to(device)
                mask = mask_generation_before("first0", video_input.shape, video_input.dtype, device) # b,f,c,h,w
                masked_video = video_input * (mask == 0)
                samples = auto_inpainting(args, 
                                          video_input, 
                                          masked_video, 
                                          mask, 
                                          text_prompt, 
                                          pil_image, 
                                          vae, 
                                          text_encoder, 
                                          image_encoder, 
                                          diffusion, 
                                          model, 
                                          device,
                                          )
                sample_list[i].append(samples)
            else:
                if sum(video.shape[0] for video in sample_list[i]) / args.fps >= time_list[i]:
                    break
                print('Generating the ({}) prompt'.format(text_prompt), flush=True)
                if reference_lists[i][0] == 0 or reference_lists[i][0] > len(key_list):
                    pil_image = None
                else:
                    pil_image = Image.open(args.reference_image_path[reference_lists[i][0] - 1])
                    pil_image.resize((256, 256))
                pre_video = sample_list[i][-1][-args.researve_frame:]
                f, c, h, w = pre_video.shape
                lat_video = torch.zeros(args.num_frames - args.researve_frame, c, h, w).to(device)
                video_input = torch.concat([pre_video, lat_video], dim=0)
                video_input = video_input.to(device).unsqueeze(0)
                mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
                masked_video = video_input * (mask == 0)
                video_clip = auto_inpainting(args, 
                                             video_input, 
                                             masked_video, 
                                             mask, 
                                             text_prompt, 
                                             pil_image, 
                                             vae, 
                                             text_encoder, 
                                             image_encoder, 
                                             diffusion, 
                                             model, 
                                             device,
                                             )
                sample_list[i].append(video_clip[args.researve_frame:])
                print(video_clip[args.researve_frame:].shape)

        # transition
        if args.video_transition and i != 0:
            video_1 = sample_list[i - 1][-1][-1:]
            video_2 = sample_list[i][0][:1]
            f, c, h, w = video_1.shape
            video_middle = torch.zeros(args.num_frames - 2, c, h, w).to(device)
            video_input = torch.concat([video_1, video_middle, video_2], dim=0)
            video_input = video_input.to(device).unsqueeze(0)
            mask = mask_generation_before("onelast1", video_input.shape, video_input.dtype, device)
            masked_video = masked_video = video_input * (mask == 0)
            video_clip = auto_inpainting(args, 
                                         video_input, 
                                         masked_video, 
                                         mask, 
                                         "smooth transition, slow motion, slow changing.", 
                                         pil_image, 
                                         vae, 
                                         text_encoder, 
                                         image_encoder, 
                                         diffusion, 
                                         model, 
                                         device,
                                         )
            sample_list[i].insert(0, video_clip[1:-1])

        # save videos
        samples = torch.concat(sample_list[i], dim=0)
        samples = samples[0: time_list[i] * args.fps]
        if not os.path.exists(args.save_origin_video_path):
            os.makedirs(args.save_origin_video_path)
        video_ = ((samples * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1).contiguous()
        torchvision.io.write_video(args.save_origin_video_path + "/" + f"{i}" + '.mp4', video_, fps=args.fps)
    
    # post processing
    fusion(args.save_origin_video_path)
    captioning(args.script_file_path, args.zh_script_file_path, args.save_origin_video_path, args.save_caption_video_path)
    fusion(args.save_caption_video_path)
    make_audio(args.script_file_path, args.save_audio_path)
    merge_video_audio(args.save_caption_video_path, args.save_audio_path, args.save_audio_caption_video_path)
    concatenate_videos(args.save_audio_caption_video_path)
    print('final video save path {}'.format(args.save_audio_caption_video_path))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="configs/vlog_read_script_sample.yaml")
    args = parser.parse_args()
    omega_conf = OmegaConf.load(args.config)
    save_path = omega_conf.save_path
    save_origin_video_path = os.path.join(save_path, "origin_video")
    save_caption_video_path = os.path.join(save_path.rsplit('/', 1)[0], "caption_video")
    save_audio_path = os.path.join(save_path.rsplit('/', 1)[0], "audio")
    save_audio_caption_video_path = os.path.join(save_path.rsplit('/', 1)[0], "audio_caption_video")
    if omega_conf.sample_num is not None:
        for i in range(omega_conf.sample_num):
            omega_conf.save_origin_video_path = save_origin_video_path + f'-{i}'
            omega_conf.save_caption_video_path = save_caption_video_path + f'-{i}'
            omega_conf.save_audio_path = save_audio_path + f'-{i}'
            omega_conf.save_audio_caption_video_path = save_audio_caption_video_path + f'-{i}'
            omega_conf.seed += i
            main(omega_conf)
    else:
        omega_conf.save_origin_video_path = save_origin_video_path
        omega_conf.save_caption_video_path = save_caption_video_path
        omega_conf.save_audio_path = save_audio_path
        omega_conf.save_audio_caption_video_path = save_audio_caption_video_path
        main(omega_conf)