Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Union, Tuple, List | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
from models.blocks import JointTransformerBlock | |
# from diffusers.models.attention_processor import Attention, AttentionProcessor | |
from models.attention import Attention, AttentionProcessor | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormContinuous | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed | |
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput | |
from einops import rearrange | |
from torch.distributed._tensor import Shard, Replicate | |
from torch.distributed.tensor.parallel import ( | |
parallelize_module, | |
PrepareModuleOutput | |
) | |
#from models.layers import ParallelTimestepEmbedder, TransformerBlock, ParallelFinalLayer, Identity | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
""" | |
The Transformer model introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
sample_size (`int`): The width of the latent images. This is fixed during training since | |
it is used to learn a number of position embeddings. | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
out_channels (`int`, defaults to 16): Number of output channels. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: int = 128, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
num_layers: int = 18, | |
attention_head_dim: int = 64, | |
num_attention_heads: int = 18, | |
joint_attention_dim: int = 4096, | |
caption_projection_dim: int = 1152, | |
pooled_projection_dim: int = 2048, | |
out_channels: int = 16, | |
pos_embed_max_size: int = 96, | |
tp_size: int = 1, | |
rope_scaling_factor: float = 1., | |
): | |
super().__init__() | |
default_out_channels = in_channels | |
self.out_channels = out_channels if out_channels is not None else default_out_channels | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
self.pos_embed = PatchEmbed( | |
height=self.config.sample_size, | |
width=self.config.sample_size, | |
patch_size=self.config.patch_size, | |
in_channels=self.config.in_channels, | |
embed_dim=self.inner_dim, | |
pos_embed_max_size=pos_embed_max_size, # hard-code for now. | |
) | |
self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) | |
# `attention_head_dim` is doubled to account for the mixing. | |
# It needs to crafted when we get the actual checkpoints. | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
JointTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.inner_dim, | |
context_pre_only=i == num_layers - 1, | |
tp_size = tp_size | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
# Video param | |
# self.scatter_dim_zero = Identity() | |
self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis( | |
self.inner_dim // self.config.num_attention_heads, 1000000, theta=1e6, rope_scaling_factor=rope_scaling_factor # todo max pos embeds | |
) | |
#self.vid_token = nn.Parameter(torch.empty(self.inner_dim)) | |
def tp_parallelize(model, tp_mesh): | |
for layer_id, transformer_block in enumerate(model.transformer_blocks): | |
layer_tp_plan = { | |
# Attention layer | |
"attn.gather_seq_scatter_hidden": PrepareModuleOutput( | |
output_layouts=Replicate(), | |
desired_output_layouts=Shard(-2) | |
), | |
"attn.gather_hidden_scatter_seq": PrepareModuleOutput( | |
output_layouts=Shard(-2), | |
desired_output_layouts=Replicate(), | |
) | |
} | |
parallelize_module( | |
module=transformer_block, | |
device_mesh=tp_mesh, | |
parallelize_plan=layer_tp_plan | |
) | |
return model | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0): | |
freqs = 1.0 / (theta ** ( | |
torch.arange(0, dim, 2)[: (dim // 2)].float() / dim | |
)) | |
t = torch.arange(end, device=freqs.device, dtype=torch.float) | |
t = t / rope_scaling_factor | |
freqs = torch.outer(t, freqs).float() | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def patchify_and_embed(self, x): | |
pH = pW = self.patch_size | |
B, F, C, H, W = x.size() | |
x = rearrange(x, "b f c h w -> (b f) c h w") | |
x = self.pos_embed(x) # [B L D] | |
# x = torch.cat([ | |
# x, | |
# self.vid_token.view(1, 1, -1).expand(B*F, 1, -1), | |
# ], dim=1) | |
return x, F, [(H, W)] * B | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
pooled_projections: torch.FloatTensor = None, | |
timestep: torch.LongTensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`VchitectXLTransformerModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
# if USE_PEFT_BACKEND: | |
# # weight the lora layers by setting `lora_scale` for each PEFT layer | |
# scale_lora_layers(self, lora_scale) | |
# else: | |
# logger.warning( | |
# "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
# ) | |
height, width = hidden_states.shape[-2:] | |
batch_size = hidden_states.shape[0] | |
hidden_states, F_num, _ = self.patchify_and_embed(hidden_states) # takes care of adding positional embeddings too. | |
full_seq = batch_size * F_num | |
self.freqs_cis = self.freqs_cis.to(hidden_states.device) | |
freqs_cis = self.freqs_cis | |
# seq_length = hidden_states.size(1) | |
# freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num] | |
temb = self.time_text_embed(timestep, pooled_projections) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
# for block in self.transformer_blocks: | |
# if self.training and self.gradient_checkpointing: | |
# def create_custom_forward(module, return_dict=None): | |
# def custom_forward(*inputs): | |
# if return_dict is not None: | |
# return module(*inputs, return_dict=return_dict) | |
# else: | |
# return module(*inputs) | |
# return custom_forward | |
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
# hidden_states = torch.utils.checkpoint.checkpoint( | |
# create_custom_forward(block), | |
# hidden_states, | |
# encoder_hidden_states, | |
# temb, | |
# **ckpt_kwargs, | |
# ) | |
# else: | |
# encoder_hidden_states, hidden_states = block( | |
# hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb | |
# ) | |
for block_idx, block in enumerate(self.transformer_blocks): | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb.repeat(F_num,1), freqs_cis=freqs_cis, full_seqlen=full_seq, Frame=F_num | |
) | |
hidden_states = self.norm_out(hidden_states, temb) | |
hidden_states = self.proj_out(hidden_states) | |
# unpatchify | |
# hidden_states = hidden_states[:, :-1] #Drop the video token | |
# unpatchify | |
patch_size = self.config.patch_size | |
height = height // patch_size | |
width = width // patch_size | |
hidden_states = hidden_states.reshape( | |
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) | |
) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
def get_fsdp_wrap_module_list(self) -> List[nn.Module]: | |
return list(self.transformer_blocks) | |
def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1): | |
import os | |
import json | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
config["tp_size"] = tp_size | |
from diffusers.utils import WEIGHTS_NAME | |
from safetensors.torch import load_file,load_model | |
model = cls.from_config(config) | |
# model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
model_files = [ | |
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'), | |
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors') | |
] | |
model_file = None | |
for fp in model_files: | |
if os.path.exists(fp): | |
model_file = fp | |
if not model_file: | |
raise RuntimeError(f"{model_file} does not exist") | |
if not os.path.isfile(model_file): | |
raise RuntimeError(f"{model_file} does not exist") | |
state_dict = load_file(model_file,device="cpu") | |
m, u = model.load_state_dict(state_dict, strict=False) | |
model = model.to(torch_dtype) | |
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()] | |
total_params = [p.numel() for n, p in model.named_parameters()] | |
if logger is not None: | |
logger.info(f"model_file: {model_file}") | |
logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M") | |
logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M") | |
return model |