Spaces:
Runtime error
Runtime error
File size: 9,032 Bytes
0035a82 62ed889 0035a82 62ed889 0035a82 f26051c 0035a82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import sys
import math
import docx
try:
import utils
from diffusion import create_diffusion
except:
# sys.path.append(os.getcwd())
sys.path.append(os.path.split(sys.path[0])[0])
# sys.path[0]
# os.path.split(sys.path[0])
import utils
from diffusion import create_diffusion
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import argparse
import torchvision
from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from utils import mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available
config_path = "configs/sample_i2v.yaml"
args = OmegaConf.load(config_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(args)
def model_i2v_fun(args):
if args.seed:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
if args.ckpt is None:
raise ValueError("Please specify a checkpoint path using --ckpt <path>")
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
args.image_h = args.image_size[0]
args.image_w = args.image_size[1]
args.latent_h = latent_h
args.latent_w = latent_w
print("loading model")
model = get_models(args).to(device)
if args.use_compile:
model = torch.compile(model)
ckpt_path = args.ckpt
state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema']
model.load_state_dict(state_dict)
print('loading success')
model.eval()
pretrained_model_path = args.pretrained_model_path
diffusion = create_diffusion(str(args.num_sampling_steps))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
text_encoder = TextEmbedder(pretrained_model_path).to(device)
# if args.use_fp16:
# print('Warning: using half precision for inference')
# vae.to(dtype=torch.float16)
# model.to(dtype=torch.float16)
# text_encoder.to(dtype=torch.float16)
return vae, model, text_encoder, diffusion
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
# prepare inputs
if args.use_fp16:
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
masked_video = masked_video.to(dtype=torch.float16)
mask = mask.to(dtype=torch.float16)
else:
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
# classifier_free_guidance
if args.do_classifier_free_guidance:
masked_video = torch.cat([masked_video] * 2)
mask = torch.cat([mask] * 2)
z = torch.cat([z] * 2)
prompt_all = [prompt] + [args.negative_prompt]
else:
masked_video = masked_video
mask = mask
z = z
prompt_all = [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt,
class_labels=None,
cfg_scale=args.cfg_scale,
use_fp16=args.use_fp16,) # tav unet
# Sample images:
if args.sample_method == 'ddim':
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=args.use_mask
)
elif args.sample_method == 'ddpm':
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=args.use_mask
)
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
if args.use_fp16:
samples = samples.to(dtype=torch.float16)
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def get_input(path,args):
input_path = path
# input_path = args.input_path
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
video_transforms.ResizeVideo((args.image_h, args.image_w)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
if input_path is not None:
print(f'loading image from {input_path}')
if os.path.isdir(input_path):
file_list = os.listdir(input_path)
video_frames = []
if args.mask_type.startswith('onelast'):
num = int(args.mask_type.split('onelast')[-1])
# get first and last frame
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
for i in range(num):
video_frames.append(first_frame)
# add zeros to frames
num_zeros = args.num_frames-2*num
for i in range(num_zeros):
zeros = torch.zeros_like(first_frame)
video_frames.append(zeros)
for i in range(num):
video_frames.append(last_frame)
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
else:
for file in file_list:
if file.endswith('jpg') or file.endswith('png'):
image = torch.as_tensor(np.array(Image.open(os.path.join(input_path,file)), dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(image)
else:
continue
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
return video_frames, n
elif os.path.isfile(input_path):
_, full_file_name = os.path.split(input_path)
file_name, extention = os.path.splitext(full_file_name)
if extention == '.jpg' or extention == '.png':
# raise TypeError('a single image is not supported yet!!')
print("reading video from a image")
video_frames = []
num = int(args.mask_type.split('first')[-1])
first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0)
for i in range(num):
video_frames.append(first_frame)
num_zeros = args.num_frames-num
for i in range(num_zeros):
zeros = torch.zeros_like(first_frame)
video_frames.append(zeros)
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
return video_frames, n
else:
raise TypeError(f'{extention} is not supported !!')
else:
raise ValueError('Please check your path input!!')
else:
# raise ValueError('Need to give a video or some images')
print('given video is None, using text to video')
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
args.mask_type = 'all'
video_frames = transform_video(video_frames)
n = 0
return video_frames, n
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
|