File size: 9,032 Bytes
0035a82
 
 
 
 
 
 
 
62ed889
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ed889
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26051c
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import sys
import math
import docx
try:
    import utils

    from diffusion import create_diffusion

except:
    # sys.path.append(os.getcwd())
    sys.path.append(os.path.split(sys.path[0])[0])
    # sys.path[0]                 
    # os.path.split(sys.path[0])    

    
    import utils

    from diffusion import create_diffusion

import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import argparse
import torchvision

from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from utils import mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available

config_path = "configs/sample_i2v.yaml"
args = OmegaConf.load(config_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(args)

def model_i2v_fun(args):
    if args.seed:
        torch.manual_seed(args.seed)
    torch.set_grad_enabled(False)
    if args.ckpt is None:
        raise ValueError("Please specify a checkpoint path using --ckpt <path>")
    latent_h = args.image_size[0] // 8
    latent_w = args.image_size[1] // 8
    args.image_h = args.image_size[0]
    args.image_w = args.image_size[1]
    args.latent_h = latent_h
    args.latent_w = latent_w
    print("loading model")
    model = get_models(args).to(device)

    if args.use_compile:
        model = torch.compile(model)
    ckpt_path = args.ckpt
    state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema']
    model.load_state_dict(state_dict)

    print('loading success')

    model.eval()
    pretrained_model_path = args.pretrained_model_path
    diffusion = create_diffusion(str(args.num_sampling_steps))
    vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
    text_encoder = TextEmbedder(pretrained_model_path).to(device)
    # if args.use_fp16:
    #     print('Warning: using half precision for inference')
    #     vae.to(dtype=torch.float16)
    #     model.to(dtype=torch.float16)
    #     text_encoder.to(dtype=torch.float16)

    return vae, model, text_encoder, diffusion


def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
    b,f,c,h,w=video_input.shape
    latent_h = args.image_size[0] // 8
    latent_w = args.image_size[1] // 8

    # prepare inputs
    if args.use_fp16:
        z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
        masked_video = masked_video.to(dtype=torch.float16)
        mask = mask.to(dtype=torch.float16)
    else:
        z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w


    masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
    masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
    masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
    mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
   
    # classifier_free_guidance
    if args.do_classifier_free_guidance:
        masked_video = torch.cat([masked_video] * 2)
        mask = torch.cat([mask] * 2)
        z = torch.cat([z] * 2)
        prompt_all = [prompt] + [args.negative_prompt]
        
    else:
        masked_video = masked_video
        mask = mask
        z = z
        prompt_all = [prompt]

    text_prompt = text_encoder(text_prompts=prompt_all, train=False)
    model_kwargs = dict(encoder_hidden_states=text_prompt, 
                            class_labels=None, 
                            cfg_scale=args.cfg_scale,
                            use_fp16=args.use_fp16,) # tav unet

    # Sample images:
    if args.sample_method == 'ddim':
        samples = diffusion.ddim_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
            mask=mask, x_start=masked_video, use_concat=args.use_mask
        )
    elif args.sample_method == 'ddpm':
        samples = diffusion.p_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
            mask=mask, x_start=masked_video, use_concat=args.use_mask
        )
    samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
    if args.use_fp16:
        samples = samples.to(dtype=torch.float16)

    video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
    video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
    return video_clip
    
def get_input(path,args):
    input_path = path
    # input_path = args.input_path
    transform_video = transforms.Compose([
            video_transforms.ToTensorVideo(), # TCHW
            video_transforms.ResizeVideo((args.image_h, args.image_w)),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])
    temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
    if input_path is not None:
        print(f'loading image from {input_path}')
        if os.path.isdir(input_path):
            file_list = os.listdir(input_path)
            video_frames = []
            if args.mask_type.startswith('onelast'):
                num = int(args.mask_type.split('onelast')[-1])
                # get first and last frame
                first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
                last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
                first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                for i in range(num):
                    video_frames.append(first_frame)
                # add zeros to frames
                num_zeros = args.num_frames-2*num
                for i in range(num_zeros):
                    zeros = torch.zeros_like(first_frame)
                    video_frames.append(zeros)
                for i in range(num):
                    video_frames.append(last_frame)
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
                video_frames = transform_video(video_frames)
            else:
                for file in file_list:
                    if file.endswith('jpg') or file.endswith('png'):
                        image = torch.as_tensor(np.array(Image.open(os.path.join(input_path,file)), dtype=np.uint8, copy=True)).unsqueeze(0)
                        video_frames.append(image)
                    else:
                        continue
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
                video_frames = transform_video(video_frames)
            return video_frames, n
        elif os.path.isfile(input_path):
            _, full_file_name = os.path.split(input_path)
            file_name, extention = os.path.splitext(full_file_name)
            if extention == '.jpg' or extention == '.png':
                # raise TypeError('a single image is not supported yet!!')
                print("reading video from a image")
                video_frames = []
                num = int(args.mask_type.split('first')[-1])
                first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0)
                for i in range(num):
                    video_frames.append(first_frame)
                num_zeros = args.num_frames-num
                for i in range(num_zeros):
                    zeros = torch.zeros_like(first_frame)
                    video_frames.append(zeros)
                n = 0
                video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
                video_frames = transform_video(video_frames)
                return video_frames, n
            else:
                raise TypeError(f'{extention} is not supported !!')
        else:
            raise ValueError('Please check your path input!!')
    else:
        # raise ValueError('Need to give a video or some images')
        print('given video is None, using text to video')
        video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
        args.mask_type = 'all'
        video_frames = transform_video(video_frames)
        n = 0
        return video_frames, n
    
def setup_seed(seed):
	torch.manual_seed(seed)
	torch.cuda.manual_seed_all(seed)