File size: 11,043 Bytes
d831908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import sys
import os
import numpy as np
import random
import json
import shutil
import time
from scipy.stats import pearsonr
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVR as LinearSVR
from sklearn.model_selection import KFold
from chemdata import (
convert_numpy,
LinearSVRZAMA,
XGBRegressorZAMA,
OnDiskNetwork,
FHEModelDev,
FHEModelClient,
get_ECFP_AND_FEATURES,
)
import matplotlib.pyplot as plt
import xgboost as xgb
random.seed(42)
def hyper_opt(X_train, y_train, param_grid, regressor, verbose=10):
if regressor == "SVR":
if param_grid is None:
param_grid = {
"epsilon": [1e-2, 1e-1, 0.5],
"C": [1e-4,1e-3, 1e-2, 1e-1],
"loss": ["squared_epsilon_insensitive"],
"tol": [0.0001],
"max_iter": [50000],
"dual": [True],
}
regressor_fct = LinearSVR()
elif regressor == "XGB":
if param_grid is None:
param_grid = {
"max_depth": [3, 6, 10],
"learning_rate": [0.01, 0.1, 0.2],
"n_estimators": [10, 20, 50, 100],
"colsample_bytree": [0.3, 0.7],
}
regressor_fct = xgb.XGBRegressor(objective="reg:squarederror")
else:
raise ValueError("Unknown regressor type")
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
grid_search = GridSearchCV(
estimator=regressor_fct,
param_grid=param_grid,
cv=kfold,
verbose=verbose,
n_jobs=-1,
)
grid_search.fit(X_train, y_train)
return (
grid_search.best_params_,
grid_search.best_score_,
grid_search.best_estimator_,
)
def train_xgb_regressor(X_train, y_train, param_grid=None, verbose=10):
if param_grid is None:
param_grid = {
"max_depth": [3, 6],
"learning_rate": [0.01, 0.1, 0.2],
"n_estimators": [20],
"colsample_bytree": [0.3, 0.7],
}
xgb_regressor = xgb.XGBRegressor(objective="reg:squarederror")
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
grid_search = GridSearchCV(
estimator=xgb_regressor,
param_grid=param_grid,
cv=kfold,
verbose=verbose,
n_jobs=-1,
)
grid_search.fit(X_train, y_train)
return (
grid_search.best_params_,
grid_search.best_score_,
grid_search.best_estimator_,
)
def evaluate_model(model, X_test, y_test):
y_pred = model.predict(X_test)
pearsonr_score = pearsonr(y_test, y_pred).statistic
return pearsonr_score
def performance_bits():
"""
Test the model performance for different number of bits = feature vector length
"""
bits = np.array([2**i for i in range(4, 12)])
plt.close("all")
fig, ax = plt.subplots()
for r in [2, 3, 4]:
performance = []
for bit in bits:
X_train, X_test, y_train, y_test = load_data(
"LOG HLM_CLint (mL/min/kg)", bits=bit, radius=r
)
param_grid = {
"epsilon": [0.0, 0.1, 0.2, 0.5, 1.0],
"C": [0.1, 1, 10, 100],
"loss": ["epsilon_insensitive", "squared_epsilon_insensitive"],
"tol": [1e-4, 1e-3, 1e-2],
"max_iter": [1000, 5000, 10000],
}
best_params, best_score, best_model = hyper_opt(
X_train, y_train, param_grid, regressor="SVR", verbose=10
)
if not os.path.exists("data"):
os.makedirs("data")
with open("data/best_params_{}.json".format(bit), "w") as fp:
json.dump(best_params, fp, default=convert_numpy)
pearsonr_score = evaluate_model(best_model, X_test, y_test)
performance.append(pearsonr_score)
performance = np.array(performance)
ax.plot(bits, performance, marker="o", label=f"radius={r}")
ax.set_xlabel("Number of Bits")
ax.set_ylabel("Pearson's r Correlation Coefficient")
ax.legend()
plt.grid(True)
if not os.path.exists("figures"):
os.makedirs("figures")
plt.savefig("figures/performance_bits.png")
return bits, performance
def predict_fhe(model, X_test):
y_pred_fhe = model.predict(X_test, fhe="execute")
return y_pred_fhe
def setup_network(model_dev):
network = OnDiskNetwork()
fhemodel_dev = FHEModelDev(network.dev_dir.name, model_dev)
fhemodel_dev.save()
return network, fhemodel_dev
def copy_directory(source, destination="deployment"):
try:
# Check if the source directory exists
if not os.path.exists(source):
return False, "Source directory does not exist."
# Check if the destination directory exists
if not os.path.exists(destination):
os.makedirs(destination)
# Copy each item in the source directory
for item in os.listdir(source):
s = os.path.join(source, item)
d = os.path.join(destination, item)
if os.path.isdir(s):
shutil.copytree(
s, d, dirs_exist_ok=True
) # dirs_exist_ok is available from Python 3.8
else:
shutil.copy2(s, d)
return True, None
except Exception as e:
return False, str(e)
def client_server_interaction(network, fhemodel_client, X_client):
decrypted_predictions = []
execution_time = []
for i in range(X_client.shape[0]):
clear_input = X_client[[i], :]
encrypted_input = fhemodel_client.quantize_encrypt_serialize(clear_input)
execution_time.append(
network.client_send_input_to_server_for_prediction(encrypted_input)
)
encrypted_prediction = network.server_send_encrypted_prediction_to_client()
decrypted_prediction = fhemodel_client.deserialize_decrypt_dequantize(
encrypted_prediction
)[0]
decrypted_predictions.append(decrypted_prediction)
return decrypted_predictions, execution_time
def train_zama(X_train, y_train, best_params, regressor="SVR"):
if regressor == "SVR":
best_params["n_bits"] = 12
model_dev = LinearSVRZAMA(**best_params)
elif regressor == "XGB":
best_params["n_bits"] = 6
model_dev = XGBRegressorZAMA(**best_params)
print("Training Zama model...")
model_dev.fit(X_train, y_train)
print("compiling model...")
model_dev.compile(X_train)
print("done")
return model_dev
def time_prediction(model, X_sample):
time_begin = time.time()
y_pred_fhe = model.predict(X_sample, fhe="execute")
time_end = time.time()
return time_end - time_begin
def setup_client(network, key_dir):
fhemodel_client = FHEModelClient(network.client_dir.name, key_dir=key_dir)
fhemodel_client.generate_private_and_evaluation_keys()
serialized_evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
return fhemodel_client, serialized_evaluation_keys
def compare_predictions(network, fhemodel_client, sklearn_model, X_client):
fhe_predictions_decrypted, _ = client_server_interaction(
network, fhemodel_client, X_client
)
fhe_predictions_decrypted = [
item for sublist in fhe_predictions_decrypted for item in sublist
]
fhe_predictions_decrypted = np.array(fhe_predictions_decrypted)
sklearn_predictions = sklearn_model.predict(X_client)
# try:
mae = np.mean(
np.abs(sklearn_predictions.flatten() - fhe_predictions_decrypted.flatten())
)
# and pearson correlation
pearsonr_score = pearsonr(
sklearn_predictions.flatten(), fhe_predictions_decrypted.flatten()
).statistic
# pearsons r
print("sklearn_predictions")
print(sklearn_predictions)
print("fhe_predictions_decrypted:")
print(fhe_predictions_decrypted)
print("Pearson's r between sklearn and fhe predictions: " f"{pearsonr_score:.2f}")
return mae, pearsonr_score
def predict_ADME(network, fhemodel_client, molecule, bits=256, radius=2):
encodings = get_ECFP_AND_FEATURES(molecule, bits=bits, radius=radius).reshape(1, -1)
# generate_fingerprint(molecule, radius=radius, bits=bits).reshape(1, -1)
enc_inp = fhemodel_client.quantize_encrypt_serialize(encodings)
network.client_send_input_to_server_for_prediction(enc_inp)
encrypted_prediction = network.server_send_encrypted_prediction_to_client()
decrypted_prediction = fhemodel_client.deserialize_decrypt_dequantize(
encrypted_prediction
)
return np.array([decrypted_prediction])
def fit_final_model(HYPER=True):
task = "LOG HLM_CLint (mL/min/kg)"
bits, radius = 1024, 2
X_train, X_test, y_train, y_test = load_data(task, bits=bits, radius=radius)
if HYPER:
param_grid = {
"epsilon": [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1.0],
"C": [0.1, 0.5, 1, 5, 10, 50, 100],
"loss": ["epsilon_insensitive", "squared_epsilon_insensitive"],
"tol": [1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2],
"max_iter": [5000, 1e4, 2e4],
}
best_params, best_score, best_model = hyper_opt(
X_train, y_train, param_grid, regressor="SVR", verbose=10
)
with open("best_params.json", "w") as fp:
json.dump(best_params, fp, default=convert_numpy)
print(best_params)
pearsonr_score = evaluate_model(best_model, X_test, y_test)
print(pearsonr_score)
try:
with open("best_params.json", "r") as fp:
best_params = json.load(fp)
print(best_params)
except:
print(
"No hyperparameter file found. Please run function with HYPER=True first."
)
exit()
model_dev = train_zama(X_train, y_train, best_params)
prediction_time = time_prediction(model_dev, X_test[0])
print(f"Time to predict one sample: {prediction_time:.2f} seconds")
network, fhemodel_dev = setup_network(model_dev)
copied, error_message = copy_directory(network.dev_dir.name)
if not copied:
print(f"Error copying directory: {error_message}")
network.dev_send_model_to_server()
network.dev_send_clientspecs_and_modelspecs_to_client()
fhemodel_client, serialized_evaluation_keys = setup_client(
network, network.client_dir.name
)
print(f"Evaluation keys size: {len(serialized_evaluation_keys) / (10**6):.2f} MB")
network.client_send_evaluation_key_to_server(serialized_evaluation_keys)
mae_fhe, pearsonr_score_fhe = compare_predictions(
network, fhemodel_client, best_model, X_test[-10:]
)
pred = predict_with_fingerprint(
network, fhemodel_client, "CC(=O)OC1=CC=CC=C1C(=O)O", bits=1024, radius=2
)
print(f"Prediction: {pred}")
if __name__ == "__main__":
fit_final_model(HYPER=True)
bits, performance = performance_bits()
|