File size: 12,341 Bytes
de6500f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import requests
from collections import defaultdict
from datetime import datetime, timedelta
import json
import pandas as pd
import threading
import time
import os
import signal

api_key = "c6dfc4d92a8f972d237ef696ec87b37a"

def shutdown():
    # Wait a bit before shutdown to allow the response to be returned
    def stop():
        time.sleep(1)
        os.kill(os.getpid(), signal.SIGTERM)  # Send SIGTERM to the current process to stop Gradio
        os._exit(0)
    threading.Thread(target=stop).start()
    return "Shutting down and closing the Gradio window..."

def get_weather_info(city):
    """Fetches current weather information for a city using OpenWeatherMap API."""
    
    url_current = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
    response_current = requests.get(url_current)
    if response_current.status_code != 200:
        return "Error: Could not fetch weather data."
    data_current = response_current.json()

    weather_description = data_current['weather'][0]['description']
    temperature_current = data_current['main']['temp']
    temperature_feels_like = data_current['main']['feels_like']
    temperature_min = data_current['main']['temp_min']
    temperature_max = data_current['main']['temp_max']
    pressure_sea_level = data_current['main'].get('sea_level', data_current['main']['pressure'])
    pressure_ground_level = data_current['main'].get('grnd_level', data_current['main']['pressure'])
    humidity = data_current['main']['humidity']
    visibility = data_current['visibility']
    wind_speed = data_current['wind']['speed']
    wind_deg = data_current['wind']['deg']
    clouds = data_current['clouds']['all']
    rain = data_current.get('rain', {}).get('1h', 0)
    dt = datetime.utcfromtimestamp(data_current['dt']).strftime('%Y-%m-%d %H:%M:%S')
    timezone = data_current['timezone']
    city_name = data_current['name']
    response_code = data_current['cod']

    formatted_info = (
        f"Weather: {weather_description}, "
        f"Temperature: current {temperature_current}°C, feels like {temperature_feels_like}°C, min {temperature_min}°C, max {temperature_max}°C, "
        f"Pressure: sea level {pressure_sea_level} hPa, ground level {pressure_ground_level} hPa, "
        f"Humidity: {humidity}%, "
        f"Visibility: {visibility} meters, "
        f"Wind: speed {wind_speed} m/s, deg {wind_deg}, "
        f"Clouds: {clouds}%, "
        f"Rain: {rain} mm, "
        f"Date/Time: {dt}, "
        f"Timezone: {timezone} seconds, "
        f"City Name: {city_name}, "
        f"Response Code: {response_code}"
    )

    return formatted_info
    
def get_forecast(city):
    """Fetches 2-day weather forecast for a city using OpenWeatherMap API and restructures the data into a table format."""
    url_forecast = f"http://api.openweathermap.org/data/2.5/forecast?q={city}&appid={api_key}&units=metric"
    response_forecast = requests.get(url_forecast)
    if response_forecast.status_code != 200:
        return "Error: Could not fetch forecast data."
    forecast_json = response_forecast.json()

    current_date = datetime.now().date()
    forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
    important_hours = ['09:00:00', '15:00:00', '21:00:00']

    data = []

    for entry in forecast_json['list']:
        date, time = entry['dt_txt'].split()
        date_obj = datetime.strptime(date, '%Y-%m-%d').date()
        if date_obj in forecast_dates and time in important_hours:
            data.append({
                'Date': date,
                'Time': time,
                'Temperature': entry['main']['temp'],
                'Feels Like': entry['main']['feels_like'],
                'Temp Min': entry['main']['temp_min'],
                'Temp Max': entry['main']['temp_max'],
                'Pressure': entry['main']['pressure'],
                'Humidity': entry['main']['humidity'],
                'Weather': entry['weather'][0]['description'],
                'Icon': entry['weather'][0]['icon'],
                'Wind Speed': entry['wind']['speed'],
                'Wind Deg': entry['wind']['deg'],
                'Visibility': entry['visibility'],
                'Pop': entry['pop'],
                'Rain': entry['rain']['3h'] if 'rain' in entry else 0,
                'Clouds': entry['clouds']['all']
            })

    df = pd.DataFrame(data)
    df.set_index(['Date', 'Time'], inplace=True)
    return df

def restructure_forecast_00(forecast_json):
    """Restructures the forecast JSON data into a single-line sentence format."""
    current_date = datetime.now().date()
    forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
    important_hours = ['09:00:00', '12:00:00', '15:00:00', '18:00:00', '21:00:00']

    structured_data = defaultdict(dict)
    
    for entry in forecast_json['list']:
        date, time = entry['dt_txt'].split()
        date_obj = datetime.strptime(date, '%Y-%m-%d').date()
        if date_obj in forecast_dates and time in important_hours:
            structured_data[date][time] = {
                'temperature': entry['main']['temp'],
                'feels like': entry['main']['feels_like'],
                'temp min': entry['main']['temp_min'],
                'temp max': entry['main']['temp_max'],
                'pressure': entry['main']['pressure'],
                'humidity': entry['main']['humidity'],
                'weather': entry['weather'][0]['description'],
                'icon': entry['weather'][0]['icon'],
                'wind speed': entry['wind']['speed'],
                'wind deg': entry['wind']['deg'],
                'visibility': entry['visibility'],
                'pop': entry['pop'],
                'rain': entry['rain']['3h'] if 'rain' in entry else 0,
                'clouds': entry['clouds']['all']
            }

    return format_forecast(structured_data, forecast_dates)

def format_forecast_00(structured_data, forecast_dates):
    """Formats the structured forecast data into a single-line sentence format."""
    formatted_forecast = []
    for date in forecast_dates:
        date_str = str(date)
        for time, data in structured_data[date_str].items():
            formatted_forecast.append(
                f"{date_str} : {time} ( " +
                ", ".join(f"{key} - {value}" for key, value in data.items()) +
                " )"
            )
    return "\n".join(formatted_forecast)    
    

def restructure_forecast2(forecast_json):
    """Restructures the forecast JSON data into a nested dictionary by date and time, including the next three days."""
    current_date = datetime.now().date()
    forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]

    structured_data = defaultdict(dict)
    
    for entry in forecast_json['list']:
        date, time = entry['dt_txt'].split()
        date_obj = datetime.strptime(date, '%Y-%m-%d').date()
        if date_obj in forecast_dates:
            structured_data[date][time] = {
                'temperature': entry['main']['temp'],
                'feels_like': entry['main']['feels_like'],
                'temp_min': entry['main']['temp_min'],
                'temp_max': entry['main']['temp_max'],
                'pressure': entry['main']['pressure'],
                'humidity': entry['main']['humidity'],
                'weather': entry['weather'][0]['description'],
                'icon': entry['weather'][0]['icon'],
                'wind_speed': entry['wind']['speed'],
                'wind_deg': entry['wind']['deg'],
                'visibility': entry['visibility'],
                'pop': entry['pop'],
                'rain': entry['rain']['3h'] if 'rain' in entry else 0,
                'clouds': entry['clouds']['all']
            }
    
    return {str(date): structured_data[str(date)] for date in forecast_dates}

def restructure_forecast_0(forecast_json):
    """Restructures the forecast JSON data into a nested dictionary by date and specific times."""
    current_date = datetime.now().date()
    forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
    important_hours = ['09:00:00', '12:00:00', '15:00:00', '18:00:00', '21:00:00']

    structured_data = defaultdict(dict)
    
    for entry in forecast_json['list']:
        date, time = entry['dt_txt'].split()
        date_obj = datetime.strptime(date, '%Y-%m-%d').date()
        if date_obj in forecast_dates and time in important_hours:
            structured_data[date][time] = {
                'temperature': entry['main']['temp'],
                'feels_like': entry['main']['feels_like'],
                'temp_min': entry['main']['temp_min'],
                'temp_max': entry['main']['temp_max'],
                'pressure': entry['main']['pressure'],
                'humidity': entry['main']['humidity'],
                'weather': entry['weather'][0]['description'],
                'icon': entry['weather'][0]['icon'],
                'wind_speed': entry['wind']['speed'],
                'wind_deg': entry['wind']['deg'],
                'visibility': entry['visibility'],
                'pop': entry['pop'],
                'rain': entry['rain']['3h'] if 'rain' in entry else 0,
                'clouds': entry['clouds']['all']
            }

    return {str(date): structured_data[str(date)] for date in forecast_dates}


def restructure_forecast3(forecast_json):
    """Restructures the forecast JSON data into a nested dictionary by date and time, including the next three days."""
    current_date = datetime.now().date()
    forecast_dates = [current_date + timedelta(days=i) for i in range(1, 4)]

    structured_data = defaultdict(dict)
    
    for entry in forecast_json['list']:
        date, time = entry['dt_txt'].split()
        date_obj = datetime.strptime(date, '%Y-%m-%d').date()
        if date_obj in forecast_dates:
            structured_data[date][time] = {
                'temperature': entry['main']['temp'],
                'feels_like': entry['main']['feels_like'],
                'temp_min': entry['main']['temp_min'],
                'temp_max': entry['main']['temp_max'],
                'pressure': entry['main']['pressure'],
                'humidity': entry['main']['humidity'],
                'weather': entry['weather'][0]['description'],
                'icon': entry['weather'][0]['icon'],
                'wind_speed': entry['wind']['speed'],
                'wind_deg': entry['wind']['deg'],
                'visibility': entry['visibility'],
                'pop': entry['pop'],
                'rain': entry['rain']['3h'] if 'rain' in entry else 0,
                'clouds': entry['clouds']['all']
            }
    
    return {str(date): structured_data[str(date)] for date in forecast_dates}
    
    
def get_weather_info_0(city):
    """Fetches current weather information for a city using OpenWeatherMap API."""
    
    url_current = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
    response_current = requests.get(url_current)
    if response_current.status_code != 200:
        return "Error: Could not fetch weather data."
    data_current = response_current.json()

    response = {
        'coordinates': data_current['coord'],
        'weather': data_current['weather'][0],
        'temperature': {
            'current': data_current['main']['temp'],
            'feels_like': data_current['main']['feels_like'],
            'min': data_current['main']['temp_min'],
            'max': data_current['main']['temp_max']
        },
        'pressure': {
            'sea_level': data_current['main'].get('sea_level', data_current['main']['pressure']),
            'ground_level': data_current['main'].get('grnd_level', data_current['main']['pressure'])
        },
        'humidity': data_current['main']['humidity'],
        'visibility': data_current['visibility'],
        'wind': data_current['wind'],
        'clouds': data_current['clouds'],
        'rain': data_current.get('rain', {}),
        'dt': data_current['dt'],
        'sys': data_current['sys'],
        'timezone': data_current['timezone'],
        'id': data_current['id'],
        'name': data_current['name'],
        'cod': data_current['cod']
    }

    return json.dumps(response, indent=2)