File size: 2,679 Bytes
1248b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import tiktoken
from model import GPT, GPTConfig
import gradio as gr
from torch.nn import functional as F

device = "cpu"
if torch.cuda.is_available():
    device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
    device = "mps"

# STOP
num_return_sequences = 1
# max_length = 100
model = GPT(GPTConfig())
model.to(device)
model.load_state_dict(torch.load('./checkpoints/final_model.pth', map_location=device))

# Set the model to evaluation mode
model.eval()


def generate(text, max_length):
    enc = tiktoken.get_encoding("gpt2")
    tokens = enc.encode(text)
    tokens = torch.tensor(tokens, dtype= torch.long) # (len,) #check tiktoken app
    tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (1, len)
    x = tokens.to(device)

    while x.size(1) < max_length:
        # forward the model to get the logits
        with torch.no_grad():
            logits = model(x)[0] # (B, T, vocab_size)
            # take the logits at the last position
            logits = logits[:, -1, :] # (B, vocab_size)
            # get the probabilities
            probs = F.softmax(logits, dim=-1)
            # do top-k sampling of 50 (huggingface pipeline default)
            # topk_probs here becomes (5, 50), topk_indices is (5, 50)
            topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
            # select a token from the top-k probabilities
            # note: multinomial does not demand the input to sum to 1
            ix = torch.multinomial(topk_probs, 1) # (B, 1)
            # gather the corresponding indices
            xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
            # append to the sequence
            x = torch.cat((x, xcol), dim=1)

    # print the generated text
    for i in range(num_return_sequences):
        tokens = x[i, :max_length].tolist()
        decoded = enc.decode(tokens)
    return decoded

title = "Shakespeare Poem generation using GPT - 121M Model."
description = "A simple Gradio interface to demo genaration of shakespeare poem."
examples = [["Let us kill him, and we'll have corn at our own price."],
            ["Would you proceed especially against Caius Marcius?"],
            ["Nay, but speak not maliciously."]],
demo = gr.Interface(
    generate,
    inputs=[
        gr.TextArea(label="Enter text"),
        gr.Slider(10, 100, value = 10, step=1, label="Token Length"),
    ],
    outputs=[
        gr.TextArea(label="Generated Text")
    ],
    title=title,
    description=description,
    examples=examples,
    cache_examples=False,
    live=True
)
demo.launch()