File size: 2,094 Bytes
8dacdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import numpy as np
from PIL import Image
import requests
import hopsworks
import joblib
project = hopsworks.login()
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("titanic_modal", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/titanic_model.pkl")
def titanic(Pclass, Sex, Age, SibSp, Parch, Embarked):
input_list = []
input_list.append(Pclass)
input_list.append(Sex)
input_list.append(Age)
input_list.append(SibSp)
input_list.append(Parch)
input_list.append(Embarked)
# 'res' is a list of predictions returned as the label.
res = model.predict(np.asarray(input_list).reshape(1, -1))
if res[0]==0:
link ="https://github.com/JeetNimbhorkar/TitanicLab1/raw/d9482baa7cbe47d0a8d5dcbe93e1ce7c0b2538a2/didnotsurvive.png"
else:
link = "https://github.com/JeetNimbhorkar/TitanicLab1/raw/d9482baa7cbe47d0a8d5dcbe93e1ce7c0b2538a2/survived.png"
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
#flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + pred + ".png"
titanic_url=link
img = Image.open(requests.get(titanic_url, stream=True).raw)
return img
demo = gr.Interface(
fn=titanic,
title="Titanic survival Predictive Analytics",
description="Enter passanger details to predict survival in Titanic",
allow_flagging="never",
inputs=[
gr.inputs.Number(default=1.0, label="Pclass (Enter 1,2 or 3)"),
gr.inputs.Number(default=1.0, label="Sex (0 for Male, 1 for Female)"),
gr.inputs.Number(default=1.0, label="Age"),
gr.inputs.Number(default=1.0, label="SibSp (Enter 0,1,2,3,4,5 or 8)"),
gr.inputs.Number(default=1.0, label="Parch (Enter 0,1,2,3,4,5 or 6)"),
gr.inputs.Number(default=1.0, label="Embarked (Enter 0 for C, 1 for Q and 2 for S)")
],
outputs=gr.Image(type="pil"))
demo.launch()
|