File size: 5,320 Bytes
f72ff7c
0e482d9
 
f72ff7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f89f6
 
0e482d9
f72ff7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e482d9
f72ff7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b506c
 
21f89f6
f72ff7c
 
21f89f6
 
f72ff7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f89f6
f72ff7c
 
21f89f6
 
 
 
 
f72ff7c
 
 
21f89f6
 
 
 
 
 
 
 
 
 
 
f72ff7c
 
 
 
 
 
 
21f89f6
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

load_dotenv()


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Add two numbers.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.

    Args:
        a: first int
        b: second int
    """
    return a - b


@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.

    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.

    Args:
        a: first int
        b: second int
    """
    return a % b


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.

    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.

    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.

    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}


# load the system prompt from the file
prompt_path = os.path.join(os.path.dirname(__file__), "../prompts")
with open(os.path.join(prompt_path, "system_prompt.txt"), "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever
embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2")  # dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"),
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)


tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]


def build_graph():
    llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        """Retriever node"""
        similar_question = vector_store.similarity_search(
            state["messages"][0].content)
        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
        )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()