File size: 27,955 Bytes
65f09a7
 
 
 
 
 
 
 
 
 
b7ebabc
ac0eacb
65f09a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd3150
65f09a7
 
 
7cd3150
65f09a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc58345
65f09a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc58345
65f09a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd3150
65f09a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import spacy

from geopy.geocoders import Nominatim
import geonamescache
import pycountry

from geotext import GeoText

import re

spacy.cli.download("en_core_web_lg")

# Load the spacy model with GloVe embeddings
nlp = spacy.load("en_core_web_lg")

# Load valid city names from geonamescache
gc = geonamescache.GeonamesCache()

# There is a bug with geonamescache where some countries exist as cities (e.g. albania)
# So initially we delete any country reference from the cities

# Get a list of all country names
original_countries = set(country['name'] for country in gc.get_countries().values())

# Get a list of all the original city names
original_cities = set(city['name'] for city in gc.get_cities().values())

# Get a list of all country names that appear as city names
country_names = set(
    country['name'] for country in gc.get_countries().values() if country['name'] not in original_cities)

# We also add these two cases because they have been asked by SERCO
country_names.add("Guinea Bissau")
country_names.add("Guinea bissau")
country_names.add("guinea Bissau")
country_names.add("guinea bissau")
country_names.add("Timor Leste")
country_names.add("Timor leste")
country_names.add("timor Leste")
country_names.add("timor leste")
country_names.add("UAE")
country_names.add("uae")
country_names.add("Uae")
country_names.add("Uk")
country_names.add("uK")
country_names.add("uk")
country_names.add("USa")
country_names.add("Usa")
country_names.add("usa")
country_names.add("uSa")
country_names.add("usA")
country_names.add("uSA")
country_names.add("Palestine")

# Get a list of all city names, excluding country names
city_names = set(city['name'] for city in gc.get_cities().values() if city['name'] not in original_countries)

city_names.add("Puebla de sanabria")


def flatten(lst):
    """
    Define a helper function to flatten the list recursively
    """

    for item in lst:
        if isinstance(item, list):
            yield from flatten(item)
        else:
            yield item


def is_country(reference):
    """
    Check if a given reference is a valid country name
    """
    try:
        # Check if the reference is a valid city name from the first geoparse library
        if reference in country_names:
          return True

        else:
          # if not then use the pycountry library to verify if an input is a country
          country = pycountry.countries.search_fuzzy(reference)[0]

          temp_country_names = []

          if country:
            if hasattr(country, 'name') or hasattr(country, 'official_name') or hasattr(country, 'common_name'):

              if hasattr(country, 'official_name'):
                temp_country_names.append(country.official_name.lower())
              if hasattr(country, 'name'):
                temp_country_names.append(country.name.lower())
              if hasattr(country, 'common_name'):
                temp_country_names.append(country.common_name.lower())
              if any(reference.lower()==elem for elem in temp_country_names):
                return True

          return False

    except LookupError:
        return False


def is_city(reference):
    """
    Check if a given reference is a valid city name
    """

    reference = reference.replace("x$x", "").strip()

    # Check if the reference is a valid city name
    if reference in city_names:
        return True

    # Load the Nomatim (open street maps) api
    geolocator = Nominatim(user_agent="certh_serco_validate_city_app")
    location = geolocator.geocode(reference, language="en", timeout=10)

    # If a reference is identified as a 'city', 'town', or 'village', then it is indeed a city
    if location.raw['type'] in ['city', 'town', 'village']:
        return True

    # If a reference is identified as 'administrative' (e.g. administrative area),
    # then we further examine if the retrieved info is a single token (meaning a country) or a series of tokens (meaning a city)
    # that condition takes place to separate some cases where small cities were identified as administrative areas
    elif location.raw['type'] == 'administrative':

        if len(location.raw['display_name'].split(",")) > 1:
            return True

    return False


def validate_locations(locations):
    """
    Validate that the identified references are indeed a Country and a City
    """

    validated_loc = []

    for location in locations:

        # validate whether it is a country
        if is_country(location):
            validated_loc.append((location, 'country'))

        # validate whether it is a city
        elif is_city(location):
            validated_loc.append((location, 'city'))

        else:
            # Check if the location is a multi-word name
            words = location.split()
            if len(words) > 1:

                # Try to find the country or city name among the words
                for i in range(len(words)):
                    name = ' '.join(words[i:])

                    if is_country(name):
                        validated_loc.append((name, 'country'))
                        break

                    elif is_city(name):
                        validated_loc.append((name, 'city'))
                        break

    return validated_loc


def identify_loc_ner(sentence):
    """
    Identify all the geopolitical and location entities with the spacy tool
    """

    doc = nlp(sentence)

    ner_locations = []

    # GPE and LOC are the labels for location entities in spaCy
    for ent in doc.ents:
        if ent.label_ in ['GPE', 'LOC']:

            if len(ent.text.split()) > 1:
                ner_locations.append(ent.text)
            else:
                for token in ent:
                    if token.ent_type_ == 'GPE':
                        ner_locations.append(ent.text)
                        break

    return ner_locations


def identify_loc_geoparselibs(sentence):
    """
    Identify cities and countries with 3 different geoparsing libraries
    """

    geoparse_locations = []

    # Geoparsing library 1

    # Load geonames cache to check if a city name is valid
    gc = geonamescache.GeonamesCache()

    # Get a list of many countries/cities
    countries = gc.get_countries()
    cities = gc.get_cities()

    city_names = [city['name'] for city in cities.values()]
    country_names = [country['name'] for country in countries.values()]

    # if any word sequence in our sentence is one of those countries/cities identify it
    words = sentence.split()
    for i in range(len(words)):
        for j in range(i + 1, len(words) + 1):
            word_seq = ' '.join(words[i:j])
            if word_seq in city_names or word_seq in country_names:
                geoparse_locations.append(word_seq)

    # Geoparsing library 2

    # similarly with the pycountry library
    for country in pycountry.countries:
        if country.name in sentence:
            geoparse_locations.append(country.name)

    # Geoparsing library 3

    # similarly with the geotext library
    places = GeoText(sentence)
    cities = list(places.cities)
    countries = list(places.countries)

    if cities:
        geoparse_locations += cities
    if countries:
        geoparse_locations += countries

    return (geoparse_locations, countries, cities)


def identify_loc_regex(sentence):
    """
    Identify cities and countries with regular expression matching
    """

    regex_locations = []

    # Country and cities references can be preceded by 'in', 'from' or 'of'
    pattern = r"\b(in|from|of)\b\s([\w\s]+)"
    additional_refs = re.findall(pattern, sentence)

    for match in additional_refs:
        regex_locations.append(match[1])

    return regex_locations



def multiple_country_city_identifications_solve(country_city_dict):
    """
    This is a function to solve the appearance of multiple identification of countries and cities.
    It checks all the elements of the input dictionary and if any smaller length element exists as a substring inside
    a bigger length element of it, it deletes the smaller size one. In that sense, a dictionary of the sort
    {'city': ['Port moresby', 'Port'], 'country': ['Guinea', 'Papua new guinea']} will be converted into
    {'city': ['Port moresby'], 'country': ['Papua new guinea']}.

    The reason for that function, is because such type of incosistencies were identified during country/city identification,
    propably relevant to the geoparsing libraries in use
    """

    try:

        country_flag = False
        city_flag = False

        # to avoid examining any element in any case, we validate that both a country and a city exist
        # on the input dictionary and that they are of length more than one (which is the target case for us)
        if 'country' in country_city_dict:
            if len(country_city_dict['country']) > 1:
                country_flag = True

        if 'city' in country_city_dict:
            if len(country_city_dict['city']) > 1:
                city_flag = True

        # at first cope with country multiple iterative references
        if country_flag:

            # Sort the countries by length, longest first
            country_city_dict['country'].sort(key=lambda x: len(x), reverse=True)

            # Create a new list of countries that don't contain any substrings
            cleaned_countries = []
            for i in range(len(country_city_dict['country'])):
                is_substring = False
                for j in range(len(cleaned_countries)):
                    if country_city_dict['country'][i].lower().find(cleaned_countries[j].lower()) != -1:
                        # If the i-th country is a substring of an already-cleaned country, skip it
                        is_substring = True
                        break
                if not is_substring:
                    cleaned_countries.append(country_city_dict['country'][i])

            # Replace the original list of countries with the cleaned one
            country_city_dict['country'] = cleaned_countries

            # Create a new list of countries that are not substrings of other countries
            final_countries = []
            for i in range(len(country_city_dict['country'])):
                is_superstring = False
                for j in range(len(country_city_dict['country'])):
                    if i == j:
                        continue
                    if country_city_dict['country'][j].lower().find(country_city_dict['country'][i].lower()) != -1:
                        # If the i-th country is a substring of a different country, skip it
                        is_superstring = True
                        break
                if not is_superstring:
                    final_countries.append(country_city_dict['country'][i])

            # Replace the original list of countries with the final one
            country_city_dict['country'] = final_countries

        # then cope with city multiple iterative references
        if city_flag:

            # Sort the cities by length, longest first
            country_city_dict['city'].sort(key=lambda x: len(x), reverse=True)

            # Create a new list of cities that don't contain any substrings
            cleaned_cities = []
            for i in range(len(country_city_dict['city'])):
                is_substring = False
                for j in range(len(cleaned_cities)):
                    if country_city_dict['city'][i].lower().find(cleaned_cities[j].lower()) != -1:
                        # If the i-th city is a substring of an already-cleaned city, skip it
                        is_substring = True
                        break
                if not is_substring:
                    cleaned_cities.append(country_city_dict['city'][i])

            # Replace the original list of cities with the cleaned one
            country_city_dict['city'] = cleaned_cities

            # Create a new list of cities that are not substrings of other cities
            final_cities = []
            for i in range(len(country_city_dict['city'])):
                is_superstring = False
                for j in range(len(country_city_dict['city'])):
                    if i == j:
                        continue
                    if country_city_dict['city'][j].lower().find(country_city_dict['city'][i].lower()) != -1:
                        # If the i-th city is a substring of a different city, skip it
                        is_superstring = True
                        break
                if not is_superstring:
                    final_cities.append(country_city_dict['city'][i])

            # Replace the original list of cities with the final one
            country_city_dict['city'] = final_cities

        # return the final dictionary
        if country_city_dict:
            return country_city_dict

    except:
        return (0, "LOCATION", "unknown_error")


def helper_resolve_cities(sentence, locations):
    """
    Verify that the city captured does not belong to the capture country. If so delete it, unless there is also a second reference on the original sentence
    (which might be the case of a city with a similar name/substring of a country)
    """

    if 'country' in locations and 'city' in locations:

        # Check if any city names are also present in the corresponding country name
        for country in locations['country']:
            for city in locations['city']:

                if city.lower() in country.lower():
                    # If the city name is found in the country name, check how many times it appears in the sentence
                    city_count = len(re.findall(city, sentence, re.IGNORECASE))
                    if city_count == 1:
                        # If the city appears only once, remove it from the locations dictionary
                        locations['city'] = [c for c in locations['city'] if c != city]

    return locations


def helper_delete_city_reference(locations):
    """
    If the 'city' reference was captured by mistake by the system, delete it, unless it belongs to the cities that should contain it (e.g. Mexico city)
    """

    city_cities = ["Adamstown City", "Alexander City", "Angeles City", "Antipolo City", "Arizona City", "Arkansas City",
                   "Ashley City", "Atlantic City", "Bacolod City", "Bacoor City", "Bago City", "Baguio City",
                   "Baker City", "Baltimore City", "Batangas City", "Bay City", "Belgrade City", "Belize City",
                   "Benin City", "Big Bear City", "Bossier City", "Boulder City", "Brazil City", "Bridge City",
                   "Brigham City", "Brighton City", "Bristol City", "Buckeye City", "Bullhead City", "Butuan City",
                   "Cabanatuan City", "Calamba City", "Calbayog City", "California City", "Caloocan City",
                   "Calumet City", "Candon City", "Canon City", "Carcar City", "Carson City", "Castries City",
                   "Cathedral City", "Cavite City", "Cebu City", "Cedar City", "Central Falls City", "Century City",
                   "Cestos City", "City Bell", "City Terrace", "City of Balikpapan", "City of Calamba",
                   "City of Gold Coast", "City of Industry", "City of Isabela", "City of Orange", "City of Paranaque",
                   "City of Parramatta", "City of Shoalhaven", "Collier City", "Columbia City", "Commerce City",
                   "Cooper City", "Cotabato City", "Crescent City", "Crescent City North", "Culver City",
                   "Dagupan City", "Dale City", "Dali City", "Daly City", "Danao City", "Dasmariñas City", "Davao City",
                   "De Forest City", "Del City", "Dhaka City", "Dipolog City", "Dodge City", "Dumaguete City",
                   "El Centro City", "Elizabeth City", "Elk City", "Ellicott City", "Emeryville City", "Fernley City",
                   "Florida City", "Forest City", "Forrest City", "Foster City", "Freeport City", "Garden City",
                   "Gdynia City", "General Santos City", "General Trias City", "Gloucester City", "Granite City",
                   "Green City", "Grove City", "Guatemala City", "Haines City", "Haltom City", "Harbor City",
                   "Havre City", "Highland City", "Ho Chi Minh City", "Holiday City", "Horizon City", "Hyderabad City",
                   "Iligan City", "Iloilo City", "Imus City", "Iowa City", "Iriga City", "Isabela City", "Jacinto City",
                   "James City County", "Jefferson City", "Jersey City", "Jhang City", "Jincheng City", "Johnson City",
                   "Junction City", "Kaiyuan City", "Kansas City", "King City", "Kingman City", "Kingston City",
                   "Koror City", "Kowloon City", "Kuwait City", "Lake City", "Lake Havasu City", "Laoag City",
                   "Lapu-Lapu City", "Las Pinas City", "Las Piñas City", "League City", "Legazpi City", "Leisure City",
                   "Lenoir City", "Ligao City", "Lincoln City", "Linyi City", "Lipa City", "Loma Linda City",
                   "Lucena City", "Madrid City", "Makati City", "Malabon City", "Mandaluyong City", "Mandaue City",
                   "Manukau City", "Marawi City", "Marikina City", "Maryland City", "Mason City", "McKee City",
                   "Mexico City", "Mexico City Beach", "Michigan City", "Midwest City", "Mineral City", "Missouri City",
                   "Morehead City", "Morgan City", "Muntinlupa City", "Naga City", "Nagasaki City", "National City",
                   "Navotas City", "Nay Pyi Taw City", "Nevada City", "New City", "New York City", "Norwich City",
                   "Ocean City", "Oil City", "Oklahoma City", "Olongapo City", "Orange City", "Oregon City",
                   "Ozamiz City", "Pagadian City", "Palayan City", "Palm City", "Panabo City", "Panama City",
                   "Panama City", "Panama City Beach", "Parañaque City", "Park City", "Pasay City", "Peachtree City",
                   "Pearl City", "Pell City", "Phenix City", "Plant City", "Ponca City", "Port Augusta City",
                   "Port Pirie City", "Quad Cities", "Quartzsite City", "Quebec City", "Quezon City", "Quezon City",
                   "Rainbow City", "Rapid City", "Red City", "Redwood City", "Richmond City", "Rio Grande City",
                   "Roxas City", "Royse City", "Salt Lake City", "Salt Lake City", "Samal City", "San Carlos City",
                   "San Carlos City", "San Fernando City", "San Fernando City", "San Fernando City", "San Jose City",
                   "San Jose City", "San Juan City", "San Juan City", "San Pedro City", "Santa Rosa City",
                   "Science City of Munoz", "Shelby City", "Sialkot City", "Silver City", "Sioux City",
                   "South Lake Tahoe City", "South Sioux City", "Studio City", "Suisun City", "Summit Park City",
                   "Sun City", "Sun City Center", "Sun City West", "Sun City West", "Suva City", "Tabaco City",
                   "Tacloban City", "Tagbilaran City", "Taguig City", "Tagum City", "Talisay City", "Tanauan City",
                   "Tarlac City", "Tauranga City", "Tayabas City", "Temple City", "Texas City", "Thomas City",
                   "Tipp City", "Toledo City", "Traverse City", "Trece Martires City", "Tuba City", "Union City",
                   "Universal City", "University City", "Upper Hutt City", "Valencia City", "Valenzuela City",
                   "Vatican City", "Vatican City", "Ventnor City", "Webb City", "Wellington City", "Welwyn Garden City",
                   "West Valley City", "White City", "Yazoo City", "Yuba City", "Zamboanga City"]

    if 'city' in locations:
        for city in locations['city']:
            if 'city' in city:
                if not city in city_cities:
                    city = city.replace("city", "")

            elif 'City' in city:
                if not city in city_cities:
                    city = city.replace("City", "")

            locations['city'] = city

        # Convert city values to a list
        if isinstance(locations['city'], str):
            locations['city'] = [locations['city']]

    return locations


def helper_delete_country_reference(locations):
    """
    If the 'country' reference was captured by mistake by the system and exists in a city name, delete it
    """

    country_city_same = ["djibouti", "guatemala", "mexico", "panama", "san marino", "singapore", "vatican"]

    if 'country' in locations:
        for i, country in enumerate(locations['country']):

            if country.lower() not in country_city_same:
                split_country = country.lower().split()

                if 'city' in locations:
                    for j, city in enumerate(locations['city']):
                        split_city = city.lower().split()

                        for substring in split_country:
                            if substring in split_city:
                                split_city.remove(substring)
                                new_city = ' '.join(split_city)
                                locations['city'][j] = new_city.strip()

    return locations


def identify_locations(sentence):
    """
    Identify all the possible Country and City references in the given sentence, using different approaches in a hybrid manner
    """

    locations = []
    extra_serco_countries = False

    try:
        # # # this is because there were cases were a city followed by comma was not understood by the system

        sentence = sentence.replace(",", " x$x ")

        # Serco wanted to also handle these two cases without the symbol "-". The only way to do that is by hardcoding it
        if "Timor Leste" in sentence:
            extra_serco_countries = True
            locations.append("Timor Leste")

        if "Guinea Bissau" in sentence:
            extra_serco_countries = True
            locations.append("Guinea Bissau")

        # ner
        locations.append(identify_loc_ner(sentence))

        # geoparse libs
        geoparse_list, countries, cities = identify_loc_geoparselibs(sentence)
        locations.append(geoparse_list)

        # flatten the geoparse list
        locations_flat_1 = list(flatten(locations))

        # regex
        locations_flat_1.append(identify_loc_regex(sentence))

        # flatten the regex list
        locations_flat_2 = list(flatten(locations))

        # remove duplicates while also taking under consideration capitalization (e.g. a reference of italy should be valid, while also a reference of Italy and italy)
        # Lowercase the words and get their unique references using set()
        loc_unique = set([loc.lower() for loc in locations_flat_2])

        # Create a new list of locations with initial capitalization, removing duplicates
        loc_capitalization = list(
            set([loc.capitalize() if loc.lower() in loc_unique else loc.lower() for loc in locations_flat_2]))

        # That calculation checks whether there are substrings contained in another string. E.g. for the case of [timor leste, timor], it should remove "timor"
        if extra_serco_countries:
            loc_capitalization_cp = loc_capitalization.copy()
            for i, loc1 in enumerate(loc_capitalization):
                for j, loc2 in enumerate(loc_capitalization):
                    if i != j and loc1 in loc2:
                        loc_capitalization_cp.remove(loc1)
                        break

            loc_capitalization = loc_capitalization_cp

        # validate that indeed each one of the countries/cities are indeed countries/cities
        validated_locations = validate_locations(loc_capitalization)

        # create a proper dictionary with country/city tags and the relevant entries as a result
        loc_dict = {}
        for location, loc_type in validated_locations:
            if loc_type not in loc_dict:
                loc_dict[loc_type] = []
            loc_dict[loc_type].append(location)

        # bring sentence on previous form
        sentence = sentence.replace(" x$x ", ",")

        # cope with cases of iterative country or city reference due to geoparse lib issues
        locations_dict = multiple_country_city_identifications_solve(loc_dict)

        if locations_dict == None:
            return (0, "LOCATION", "no_country")
            # return {'city':[], 'country':[]}

        else:
            # conditions for multiple references
            # it is mandatory that a country will exist
            if 'country' in locations_dict:

                # if a city exists
                if 'city' in locations_dict:

                    resolved_dict = helper_resolve_cities(sentence, locations_dict)

                    # we accept one country and one city
                    if len(resolved_dict['country']) == 1 and len(resolved_dict['city']) == 1:

                        # capitalize because there may be cases that it will return 'italy'
                        resolved_dict['country'][0] = resolved_dict['country'][0].capitalize()

                        # there were some cases that the 'x$x' was not removed
                        for key, values in resolved_dict.items():
                            for i, value in enumerate(values):
                                if 'x$x' in value:
                                    values[i] = value.replace('x$x', '')

                        delete_city = helper_delete_city_reference(resolved_dict)

                        return helper_delete_country_reference(delete_city)


                    # we can accept an absence of city but a country is always mandatory
                    elif len(resolved_dict['country']) == 1 and len(resolved_dict['city']) == 0:

                        resolved_dict['country'][0] = resolved_dict['country'][0].capitalize()
                        resolved_dict['city'] = ['0']

                        # there were some cases that the 'x$x' was not removed
                        for key, values in resolved_dict.items():
                            for i, value in enumerate(values):
                                if 'x$x' in value:
                                    values[i] = value.replace('x$x', '')

                        delete_city = helper_delete_city_reference(resolved_dict)

                        return helper_delete_country_reference(delete_city)

                    # error if more than one country or city
                    else:
                        return (0, "LOCATION", "more_city_or_country")


                # if a city does not exist
                else:
                    # we only accept for one country
                    if len(locations_dict['country']) == 1:

                        locations_dict['country'][0] = locations_dict['country'][0].capitalize()

                        # there were some cases that the 'x$x' was not removed
                        for key, values in locations_dict.items():
                            for i, value in enumerate(values):
                                if 'x$x' in value:
                                    values[i] = value.replace('x$x', '')

                        resolved_cities = helper_resolve_cities(sentence, locations_dict)
                        delete_city = helper_delete_city_reference(resolved_cities)

                        help_city = helper_delete_country_reference(delete_city)

                        if not 'city' in help_city:
                            help_city['city'] = [0]

                        return help_city

                    # error if more than one country
                    else:
                        return (0, "LOCATION", "more_country")

            # error if no country is referred
            else:
                return (0, "LOCATION", "no_country")

    except:
        # handle the exception if any errors occur while identifying a country/city
        return (0, "LOCATION", "unknown_error")