File size: 5,636 Bytes
66347a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import torch.nn as nn
from model_blocks.text_encoder import TextEncoder


class Discriminator256(nn.Module):
    def __init__(self, text_dim=256, img_channels=3):
        super(Discriminator256, self).__init__()

        self.text_encoder = TextEncoder()  # Separate text encoder for discriminators

        self.img_path = nn.Sequential(
            # 256x256 -> 128x128
            nn.Conv2d(img_channels, 16, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),

            # 128x128 -> 64x64
            nn.Conv2d(16, 32, 4, 2, 1, bias=False),
            nn.BatchNorm2d(32),
            nn.LeakyReLU(0.2, inplace=True),

            # 64x64 -> 32x32
            nn.Conv2d(32, 64, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2, inplace=True),

            # 32x32 -> 16x16
            nn.Conv2d(64, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),

            # 16x16 -> 8x8
            nn.Conv2d(128, 256, 4, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),

            # 8x8 -> 4x4
            nn.Conv2d(256, 512, 4, 2, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.text_path = nn.Sequential(
            nn.Linear(text_dim, 1024),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(1024, 512)
        )

        # Unconditional classifier (real/fake without text conditioning)
        self.unconditional_classifier = nn.Sequential(
            nn.Linear(512 * 4 * 4, 1024),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout(0.5),
            nn.Linear(1024, 1),
        )

        # Conditional classifier (text-conditioned real/fake)
        self.conditional_classifier = nn.Sequential(
            nn.Linear(512 * 4 * 4 + 512, 1024),  # size: sum of flattened image and text embedding
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout(0.5),
            nn.Linear(1024, 1),
        )

    def forward(self, images, text_features=None, text_mask=None, return_both=True):
        # Encode image
        img_features = self.img_path(images)
        img_features_flat = img_features.view(img_features.size(0), -1)  # Flatten

        unconditional_output = self.unconditional_classifier(img_features_flat)

        if not return_both:
            return unconditional_output

        if text_features is None or text_mask is None:
            raise AttributeError("text_features and text_mask necessary for text conditioning")

        # Encode text (mean pooling)
        global_full_text = self.text_encoder(text_features, text_mask)
        global_text = global_full_text.mean(dim=1)
        text_features_encoded = self.text_path(global_text)

        # Combine features
        combined = torch.cat([img_features_flat, text_features_encoded], dim=1)
        conditional_output = self.conditional_classifier(combined)

        return unconditional_output, conditional_output


class Discriminator64(nn.Module):
    def __init__(self, text_dim=256, img_channels=3):
        super(Discriminator64, self).__init__()

        self.text_encoder = TextEncoder()

        self.img_path = nn.Sequential(
            # 64x64 -> 32x32
            nn.Conv2d(img_channels, 16, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),

            # 32x32 -> 16x16
            nn.Conv2d(16, 32, 4, 2, 1, bias=False),
            nn.BatchNorm2d(32),
            nn.LeakyReLU(0.2, inplace=True),

            # 16x16 -> 8x8
            nn.Conv2d(32, 64, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2, inplace=True),

            # 8x8 -> 4x4
            nn.Conv2d(64, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
        )

        # Text encoder for discriminator
        self.text_path = nn.Sequential(
            nn.Linear(text_dim, 1024),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(1024, 512)
        )

        # Unconditional classifier (real/fake without text conditioning)
        self.unconditional_classifier = nn.Sequential(
            nn.Linear(128 * 4 * 4, 1024),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout(0.5),
            nn.Linear(1024, 1),
        )

        # Conditional classifier (text-conditioned real/fake)
        self.conditional_classifier = nn.Sequential(
            nn.Linear(128 * 4 * 4 + 512, 1024),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout(0.5),
            nn.Linear(1024, 1),
        )

    def forward(self, images, text_features=None, text_mask=None, return_both=True):
        img_features = self.img_path(images)
        img_features_flat = img_features.view(img_features.size(0), -1)  # Flatten

        unconditional_output = self.unconditional_classifier(img_features_flat)

        if not return_both:
            return unconditional_output

        if text_features is None or text_mask is None:
            raise AttributeError("text_features and text_mask necessary for text conditioning")


        # Encode text (mean pooling)
        global_full_text = self.text_encoder(text_features, text_mask)
        global_text = global_full_text.mean(dim=1)
        text_features_encoded = self.text_path(global_text)

        combined = torch.cat([img_features_flat, text_features_encoded], dim=1)
        conditional_output = self.conditional_classifier(combined)

        return unconditional_output, conditional_output