File size: 954 Bytes
e9e31ef
8afb62d
0d8d703
e9e31ef
0d8d703
0cf5a0e
 
 
5de26b9
0d8d703
 
 
 
 
0cf5a0e
d29548b
28909e5
 
 
 
 
 
0cf5a0e
28909e5
0d8d703
 
 
0cf5a0e
 
0d8d703
 
 
d29548b
b819bf7
e9e31ef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

import gradio as gr
import openai

from openai._client  import OpenAI

openai.api_key = "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"

def get_text_response(user_message):
  client = OpenAI( )
  response =  client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": user_message}],)
  return response
     
def get_image_response(user_message):
      client = OpenAI()
      response = client.images.generate(
        model="dall-e-3",
        prompt=user_message,
       
)
      image_url = response
      return image_url

# Function to get user input and display results
def chat_interface(input_text):
    text_response = get_text_response(input_text)
    image_url = get_image_response(input_text)
    print("Text Response:", text_response)
    print("Generated Image URL:", image_url)

# Create Gradio interface
gr.Interface(fn=chat_interface, inputs="text", outputs="text").launch(debug=True)