File size: 21,967 Bytes
d5001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from typing import Dict, List, Optional, Tuple, Union

import librosa
import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils import spectral_norm
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations

import TTS.vc.modules.freevc.commons as commons
import TTS.vc.modules.freevc.modules as modules
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.io import load_fsspec
from TTS.vc.configs.freevc_config import FreeVCConfig
from TTS.vc.models.base_vc import BaseVC
from TTS.vc.modules.freevc.commons import get_padding, init_weights
from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch
from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx
from TTS.vc.modules.freevc.wavlm import get_wavlm


class ResidualCouplingBlock(nn.Module):
    def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = nn.ModuleList()
        for i in range(n_flows):
            self.flows.append(
                modules.ResidualCouplingLayer(
                    channels,
                    hidden_channels,
                    kernel_size,
                    dilation_rate,
                    n_layers,
                    gin_channels=gin_channels,
                    mean_only=True,
                )
            )
            self.flows.append(modules.Flip())

    def forward(self, x, x_mask, g=None, reverse=False):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow(x, x_mask, g=g, reverse=reverse)
        return x


class Encoder(nn.Module):
    def __init__(
        self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths, g=None):
        x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask


class Generator(torch.nn.Module):
    def __init__(
        self,
        initial_channel,
        resblock,
        resblock_kernel_sizes,
        resblock_dilation_sizes,
        upsample_rates,
        upsample_initial_channel,
        upsample_kernel_sizes,
        gin_channels=0,
    ):
        super(Generator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
        resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
                self.resblocks.append(resblock(ch, k, d))

        self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(init_weights)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)

    def forward(self, x, g=None):
        x = self.conv_pre(x)
        if g is not None:
            x = x + self.cond(g)

        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            x = self.ups[i](x)
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        print("Removing weight norm...")
        for l in self.ups:
            remove_parametrizations(l, "weight")
        for l in self.resblocks:
            remove_parametrizations(l, "weight")


class DiscriminatorP(torch.nn.Module):
    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super(DiscriminatorP, self).__init__()
        self.period = period
        self.use_spectral_norm = use_spectral_norm
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList(
            [
                norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
            ]
        )
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class DiscriminatorS(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(DiscriminatorS, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList(
            [
                norm_f(Conv1d(1, 16, 15, 1, padding=7)),
                norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
                norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
                norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
                norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
                norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
            ]
        )
        self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))

    def forward(self, x):
        fmap = []

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(MultiPeriodDiscriminator, self).__init__()
        periods = [2, 3, 5, 7, 11]

        discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
        discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
        self.discriminators = nn.ModuleList(discs)

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class SpeakerEncoder(torch.nn.Module):
    def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
        super(SpeakerEncoder, self).__init__()
        self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
        self.linear = nn.Linear(model_hidden_size, model_embedding_size)
        self.relu = nn.ReLU()

    def forward(self, mels):
        self.lstm.flatten_parameters()
        _, (hidden, _) = self.lstm(mels)
        embeds_raw = self.relu(self.linear(hidden[-1]))
        return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)

    def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
        mel_slices = []
        for i in range(0, total_frames - partial_frames, partial_hop):
            mel_range = torch.arange(i, i + partial_frames)
            mel_slices.append(mel_range)

        return mel_slices

    def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
        mel_len = mel.size(1)
        last_mel = mel[:, -partial_frames:]

        if mel_len > partial_frames:
            mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
            mels = list(mel[:, s] for s in mel_slices)
            mels.append(last_mel)
            mels = torch.stack(tuple(mels), 0).squeeze(1)

            with torch.no_grad():
                partial_embeds = self(mels)
            embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
            # embed = embed / torch.linalg.norm(embed, 2)
        else:
            with torch.no_grad():
                embed = self(last_mel)

        return embed


class FreeVC(BaseVC):
    """

    Papaer::
        https://arxiv.org/abs/2210.15418#

    Paper Abstract::
        Voice conversion (VC) can be achieved by first extracting source content information and target speaker
        information, and then reconstructing waveform with these information. However, current approaches normally
        either extract dirty content information with speaker information leaked in, or demand a large amount of
        annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the
        mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for
        high-quality waveform reconstruction, and propose strategies for clean content information extraction without
        text annotation. We disentangle content information by imposing an information bottleneck to WavLM features,
        and propose the spectrogram-resize based data augmentation to improve the purity of extracted content
        information. Experimental results show that the proposed method outperforms the latest VC models trained with
        annotated data and has greater robustness.

    Original Code::
        https://github.com/OlaWod/FreeVC

    Examples:
        >>> from TTS.vc.configs.freevc_config import FreeVCConfig
        >>> from TTS.vc.models.freevc import FreeVC
        >>> config = FreeVCConfig()
        >>> model = FreeVC(config)
    """

    def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None):
        super().__init__(config, None, speaker_manager, None)

        self.init_multispeaker(config)

        self.spec_channels = self.args.spec_channels
        self.inter_channels = self.args.inter_channels
        self.hidden_channels = self.args.hidden_channels
        self.filter_channels = self.args.filter_channels
        self.n_heads = self.args.n_heads
        self.n_layers = self.args.n_layers
        self.kernel_size = self.args.kernel_size
        self.p_dropout = self.args.p_dropout
        self.resblock = self.args.resblock
        self.resblock_kernel_sizes = self.args.resblock_kernel_sizes
        self.resblock_dilation_sizes = self.args.resblock_dilation_sizes
        self.upsample_rates = self.args.upsample_rates
        self.upsample_initial_channel = self.args.upsample_initial_channel
        self.upsample_kernel_sizes = self.args.upsample_kernel_sizes
        self.segment_size = self.args.segment_size
        self.gin_channels = self.args.gin_channels
        self.ssl_dim = self.args.ssl_dim
        self.use_spk = self.args.use_spk

        self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16)
        self.dec = Generator(
            self.inter_channels,
            self.resblock,
            self.resblock_kernel_sizes,
            self.resblock_dilation_sizes,
            self.upsample_rates,
            self.upsample_initial_channel,
            self.upsample_kernel_sizes,
            gin_channels=self.gin_channels,
        )
        self.enc_q = Encoder(
            self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels
        )
        self.flow = ResidualCouplingBlock(
            self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels
        )
        if not self.use_spk:
            self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels)
        else:
            self.load_pretrained_speaker_encoder()

        self.wavlm = get_wavlm()

    @property
    def device(self):
        return next(self.parameters()).device

    def load_pretrained_speaker_encoder(self):
        """Load pretrained speaker encoder model as mentioned in the paper."""
        print(" > Loading pretrained speaker encoder model ...")
        self.enc_spk_ex = SpeakerEncoderEx(
            "https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt"
        )

    def init_multispeaker(self, config: Coqpit):
        """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer
        or with external `d_vectors` computed from a speaker encoder model.

        You must provide a `speaker_manager` at initialization to set up the multi-speaker modules.

        Args:
            config (Coqpit): Model configuration.
            data (List, optional): Dataset items to infer number of speakers. Defaults to None.
        """
        self.num_spks = self.args.num_spks
        if self.speaker_manager:
            self.num_spks = self.speaker_manager.num_spks

    def forward(
        self,
        c: torch.Tensor,
        spec: torch.Tensor,
        g: Optional[torch.Tensor] = None,
        mel: Optional[torch.Tensor] = None,
        c_lengths: Optional[torch.Tensor] = None,
        spec_lengths: Optional[torch.Tensor] = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        torch.Tensor,
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],
    ]:
        """
        Forward pass of the model.

        Args:
            c: WavLM features. Shape: (batch_size, c_seq_len).
            spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim).
            g: The speaker embedding. Shape: (batch_size, spk_emb_dim).
            mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim).
            c_lengths: The lengths of the WavLM features. Shape: (batch_size,).
            spec_lengths: The lengths of the spectrogram. Shape: (batch_size,).

        Returns:
            o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim).
            ids_slice: The slice indices. Shape: (batch_size, num_slices).
            spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len).
            (z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables.
        """

        # If c_lengths is None, set it to the length of the last dimension of c
        if c_lengths is None:
            c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)

        # If spec_lengths is None, set it to the length of the last dimension of spec
        if spec_lengths is None:
            spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)

        # If use_spk is False, compute g from mel using enc_spk
        g = None
        if not self.use_spk:
            g = self.enc_spk(mel).unsqueeze(-1)

        # Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q
        _, m_p, logs_p, _ = self.enc_p(c, c_lengths)
        z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g)

        # Compute z_p using flow
        z_p = self.flow(z, spec_mask, g=g)

        # Randomly slice z and compute o using dec
        z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
        o = self.dec(z_slice, g=g)

        return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)

    @torch.no_grad()
    def inference(self, c, g=None, mel=None, c_lengths=None):
        """
        Inference pass of the model

        Args:
            c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len).
            g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim).
            mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim).
            c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,).

        Returns:
            torch.Tensor: Output tensor.
        """
        if c_lengths == None:
            c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
        if not self.use_spk:
            g = self.enc_spk.embed_utterance(mel)
            g = g.unsqueeze(-1)
        z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
        z = self.flow(z_p, c_mask, g=g, reverse=True)
        o = self.dec(z * c_mask, g=g)
        return o

    def extract_wavlm_features(self, y):
        """Extract WavLM features from an audio tensor.

        Args:
            y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len).
        """

        with torch.no_grad():
            c = self.wavlm.extract_features(y)[0]
        c = c.transpose(1, 2)
        return c

    def load_audio(self, wav):
        """Read and format the input audio."""
        if isinstance(wav, str):
            wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate)
        if isinstance(wav, np.ndarray):
            wav = torch.from_numpy(wav).to(self.device)
        if isinstance(wav, torch.Tensor):
            wav = wav.to(self.device)
        if isinstance(wav, list):
            wav = torch.from_numpy(np.array(wav)).to(self.device)
        return wav.float()

    @torch.inference_mode()
    def voice_conversion(self, src, tgt):
        """
        Voice conversion pass of the model.

        Args:
            src (str or torch.Tensor): Source utterance.
            tgt (str or torch.Tensor): Target utterance.

        Returns:
            torch.Tensor: Output tensor.
        """

        wav_tgt = self.load_audio(tgt).cpu().numpy()
        wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)

        if self.config.model_args.use_spk:
            g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt)
            g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device)
        else:
            wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device)
            mel_tgt = mel_spectrogram_torch(
                wav_tgt,
                self.config.audio.filter_length,
                self.config.audio.n_mel_channels,
                self.config.audio.input_sample_rate,
                self.config.audio.hop_length,
                self.config.audio.win_length,
                self.config.audio.mel_fmin,
                self.config.audio.mel_fmax,
            )
        # src
        wav_src = self.load_audio(src)
        c = self.extract_wavlm_features(wav_src[None, :])

        if self.config.model_args.use_spk:
            audio = self.inference(c, g=g_tgt)
        else:
            audio = self.inference(c, mel=mel_tgt.transpose(1, 2))
        audio = audio[0][0].data.cpu().float().numpy()
        return audio

    def eval_step():
        ...

    @staticmethod
    def init_from_config(config: FreeVCConfig, samples: Union[List[List], List[Dict]] = None, verbose=True):
        model = FreeVC(config)
        return model

    def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False):
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        self.load_state_dict(state["model"], strict=strict)
        if eval:
            self.eval()

    def train_step():
        ...