File size: 12,253 Bytes
d5001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import os
import sys
import time
import traceback

import torch
from torch.utils.data import DataLoader
from trainer.io import copy_model_files, save_best_model, save_checkpoint
from trainer.torch import NoamLR
from trainer.trainer_utils import get_optimizer

from TTS.encoder.dataset import EncoderDataset
from TTS.encoder.utils.generic_utils import setup_encoder_model
from TTS.encoder.utils.training import init_training
from TTS.encoder.utils.visual import plot_embeddings
from TTS.tts.datasets import load_tts_samples
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import count_parameters, remove_experiment_folder
from TTS.utils.samplers import PerfectBatchSampler
from TTS.utils.training import check_update

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)


def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
    num_utter_per_class = c.num_utter_per_class if not is_val else c.eval_num_utter_per_class
    num_classes_in_batch = c.num_classes_in_batch if not is_val else c.eval_num_classes_in_batch

    dataset = EncoderDataset(
        c,
        ap,
        meta_data_eval if is_val else meta_data_train,
        voice_len=c.voice_len,
        num_utter_per_class=num_utter_per_class,
        num_classes_in_batch=num_classes_in_batch,
        verbose=verbose,
        augmentation_config=c.audio_augmentation if not is_val else None,
        use_torch_spec=c.model_params.get("use_torch_spec", False),
    )
    # get classes list
    classes = dataset.get_class_list()

    sampler = PerfectBatchSampler(
        dataset.items,
        classes,
        batch_size=num_classes_in_batch * num_utter_per_class,  # total batch size
        num_classes_in_batch=num_classes_in_batch,
        num_gpus=1,
        shuffle=not is_val,
        drop_last=True,
    )

    if len(classes) < num_classes_in_batch:
        if is_val:
            raise RuntimeError(
                f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !"
            )
        raise RuntimeError(
            f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !"
        )

    # set the classes to avoid get wrong class_id when the number of training and eval classes are not equal
    if is_val:
        dataset.set_classes(train_classes)

    loader = DataLoader(
        dataset,
        num_workers=c.num_loader_workers,
        batch_sampler=sampler,
        collate_fn=dataset.collate_fn,
    )

    return loader, classes, dataset.get_map_classid_to_classname()


def evaluation(model, criterion, data_loader, global_step):
    eval_loss = 0
    for _, data in enumerate(data_loader):
        with torch.no_grad():
            # setup input data
            inputs, labels = data

            # agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
            labels = torch.transpose(
                labels.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch), 0, 1
            ).reshape(labels.shape)
            inputs = torch.transpose(
                inputs.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch, -1), 0, 1
            ).reshape(inputs.shape)

            # dispatch data to GPU
            if use_cuda:
                inputs = inputs.cuda(non_blocking=True)
                labels = labels.cuda(non_blocking=True)

            # forward pass model
            outputs = model(inputs)

            # loss computation
            loss = criterion(
                outputs.view(c.eval_num_classes_in_batch, outputs.shape[0] // c.eval_num_classes_in_batch, -1), labels
            )

            eval_loss += loss.item()

    eval_avg_loss = eval_loss / len(data_loader)
    # save stats
    dashboard_logger.eval_stats(global_step, {"loss": eval_avg_loss})
    # plot the last batch in the evaluation
    figures = {
        "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
    }
    dashboard_logger.eval_figures(global_step, figures)
    return eval_avg_loss


def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader, global_step):
    model.train()
    best_loss = {"train_loss": None, "eval_loss": float("inf")}
    avg_loader_time = 0
    end_time = time.time()
    for epoch in range(c.epochs):
        tot_loss = 0
        epoch_time = 0
        for _, data in enumerate(data_loader):
            start_time = time.time()

            # setup input data
            inputs, labels = data
            # agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
            labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(
                labels.shape
            )
            inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(
                inputs.shape
            )
            # ToDo: move it to a unit test
            # labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
            # inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
            # idx = 0
            # for j in range(0, c.num_classes_in_batch, 1):
            #     for i in range(j, len(labels), c.num_classes_in_batch):
            #         if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
            #             print("Invalid")
            #             print(labels)
            #             exit()
            #         idx += 1
            # labels = labels_converted
            # inputs = inputs_converted

            loader_time = time.time() - end_time
            global_step += 1

            # setup lr
            if c.lr_decay:
                scheduler.step()
            optimizer.zero_grad()

            # dispatch data to GPU
            if use_cuda:
                inputs = inputs.cuda(non_blocking=True)
                labels = labels.cuda(non_blocking=True)

            # forward pass model
            outputs = model(inputs)

            # loss computation
            loss = criterion(
                outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels
            )
            loss.backward()
            grad_norm, _ = check_update(model, c.grad_clip)
            optimizer.step()

            step_time = time.time() - start_time
            epoch_time += step_time

            # acumulate the total epoch loss
            tot_loss += loss.item()

            # Averaged Loader Time
            num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
            avg_loader_time = (
                1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
                if avg_loader_time != 0
                else loader_time
            )
            current_lr = optimizer.param_groups[0]["lr"]

            if global_step % c.steps_plot_stats == 0:
                # Plot Training Epoch Stats
                train_stats = {
                    "loss": loss.item(),
                    "lr": current_lr,
                    "grad_norm": grad_norm,
                    "step_time": step_time,
                    "avg_loader_time": avg_loader_time,
                }
                dashboard_logger.train_epoch_stats(global_step, train_stats)
                figures = {
                    "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
                }
                dashboard_logger.train_figures(global_step, figures)

            if global_step % c.print_step == 0:
                print(
                    "   | > Step:{}  Loss:{:.5f}  GradNorm:{:.5f}  "
                    "StepTime:{:.2f}  LoaderTime:{:.2f}  AvGLoaderTime:{:.2f}  LR:{:.6f}".format(
                        global_step, loss.item(), grad_norm, step_time, loader_time, avg_loader_time, current_lr
                    ),
                    flush=True,
                )

            if global_step % c.save_step == 0:
                # save model
                save_checkpoint(
                    c, model, optimizer, None, global_step, epoch, OUT_PATH, criterion=criterion.state_dict()
                )

            end_time = time.time()

        print("")
        print(
            ">>> Epoch:{}  AvgLoss: {:.5f} GradNorm:{:.5f}  "
            "EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format(
                epoch, tot_loss / len(data_loader), grad_norm, epoch_time, avg_loader_time
            ),
            flush=True,
        )
        # evaluation
        if c.run_eval:
            model.eval()
            eval_loss = evaluation(model, criterion, eval_data_loader, global_step)
            print("\n\n")
            print("--> EVAL PERFORMANCE")
            print(
                "   | > Epoch:{}  AvgLoss: {:.5f} ".format(epoch, eval_loss),
                flush=True,
            )
            # save the best checkpoint
            best_loss = save_best_model(
                {"train_loss": None, "eval_loss": eval_loss},
                best_loss,
                c,
                model,
                optimizer,
                None,
                global_step,
                epoch,
                OUT_PATH,
                criterion=criterion.state_dict(),
            )
            model.train()

    return best_loss, global_step


def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train
    global meta_data_eval
    global train_classes

    ap = AudioProcessor(**c.audio)
    model = setup_encoder_model(c)

    optimizer = get_optimizer(c.optimizer, c.optimizer_params, c.lr, model)

    # pylint: disable=redefined-outer-name
    meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True)

    train_data_loader, train_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
    if c.run_eval:
        eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
    else:
        eval_data_loader = None

    num_classes = len(train_classes)
    criterion = model.get_criterion(c, num_classes)

    if c.loss == "softmaxproto" and c.model != "speaker_encoder":
        c.map_classid_to_classname = map_classid_to_classname
        copy_model_files(c, OUT_PATH, new_fields={})

    if args.restore_path:
        criterion, args.restore_step = model.load_checkpoint(
            c, args.restore_path, eval=False, use_cuda=use_cuda, criterion=criterion
        )
        print(" > Model restored from step %d" % args.restore_step, flush=True)
    else:
        args.restore_step = 0

    if c.lr_decay:
        scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if use_cuda:
        model = model.cuda()
        criterion.cuda()

    global_step = args.restore_step
    _, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, eval_data_loader, global_step)


if __name__ == "__main__":
    args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training()

    try:
        main(args)
    except KeyboardInterrupt:
        remove_experiment_folder(OUT_PATH)
        try:
            sys.exit(0)
        except SystemExit:
            os._exit(0)  # pylint: disable=protected-access
    except Exception:  # pylint: disable=broad-except
        remove_experiment_folder(OUT_PATH)
        traceback.print_exc()
        sys.exit(1)