File size: 7,593 Bytes
d5001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import os
from argparse import RawTextHelpFormatter

import torch
from tqdm import tqdm

from TTS.config import load_config
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.managers import save_file
from TTS.tts.utils.speakers import SpeakerManager


def compute_embeddings(
    model_path,
    config_path,
    output_path,
    old_speakers_file=None,
    old_append=False,
    config_dataset_path=None,
    formatter_name=None,
    dataset_name=None,
    dataset_path=None,
    meta_file_train=None,
    meta_file_val=None,
    disable_cuda=False,
    no_eval=False,
):
    use_cuda = torch.cuda.is_available() and not disable_cuda

    if config_dataset_path is not None:
        c_dataset = load_config(config_dataset_path)
        meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval)
    else:
        c_dataset = BaseDatasetConfig()
        c_dataset.formatter = formatter_name
        c_dataset.dataset_name = dataset_name
        c_dataset.path = dataset_path
        if meta_file_train is not None:
            c_dataset.meta_file_train = meta_file_train
        if meta_file_val is not None:
            c_dataset.meta_file_val = meta_file_val
        meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval)

    if meta_data_eval is None:
        samples = meta_data_train
    else:
        samples = meta_data_train + meta_data_eval

    encoder_manager = SpeakerManager(
        encoder_model_path=model_path,
        encoder_config_path=config_path,
        d_vectors_file_path=old_speakers_file,
        use_cuda=use_cuda,
    )

    class_name_key = encoder_manager.encoder_config.class_name_key

    # compute speaker embeddings
    if old_speakers_file is not None and old_append:
        speaker_mapping = encoder_manager.embeddings
    else:
        speaker_mapping = {}

    for fields in tqdm(samples):
        class_name = fields[class_name_key]
        audio_file = fields["audio_file"]
        embedding_key = fields["audio_unique_name"]

        # Only update the speaker name when the embedding is already in the old file.
        if embedding_key in speaker_mapping:
            speaker_mapping[embedding_key]["name"] = class_name
            continue

        if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids:
            # get the embedding from the old file
            embedd = encoder_manager.get_embedding_by_clip(embedding_key)
        else:
            # extract the embedding
            embedd = encoder_manager.compute_embedding_from_clip(audio_file)

        # create speaker_mapping if target dataset is defined
        speaker_mapping[embedding_key] = {}
        speaker_mapping[embedding_key]["name"] = class_name
        speaker_mapping[embedding_key]["embedding"] = embedd

    if speaker_mapping:
        # save speaker_mapping if target dataset is defined
        if os.path.isdir(output_path):
            mapping_file_path = os.path.join(output_path, "speakers.pth")
        else:
            mapping_file_path = output_path

        if os.path.dirname(mapping_file_path) != "":
            os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)

        save_file(speaker_mapping, mapping_file_path)
        print("Speaker embeddings saved at:", mapping_file_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n"""
        """
        Example runs:
        python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json  --config_dataset_path dataset_config.json

        python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json  --formatter_name coqui --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --meta_file_train /path/to/vctk/metafile_train.csv --meta_file_val /path/to/vctk/metafile_eval.csv
        """,
        formatter_class=RawTextHelpFormatter,
    )
    parser.add_argument(
        "--model_path",
        type=str,
        help="Path to model checkpoint file. It defaults to the released speaker encoder.",
        default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar",
    )
    parser.add_argument(
        "--config_path",
        type=str,
        help="Path to model config file. It defaults to the released speaker encoder config.",
        default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json",
    )
    parser.add_argument(
        "--config_dataset_path",
        type=str,
        help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.",
        default=None,
    )
    parser.add_argument(
        "--output_path",
        type=str,
        help="Path for output `pth` or `json` file.",
        default="speakers.pth",
    )
    parser.add_argument(
        "--old_file",
        type=str,
        help="The old existing embedding file, from which the embeddings will be directly loaded for already computed audio clips.",
        default=None,
    )
    parser.add_argument(
        "--old_append",
        help="Append new audio clip embeddings to the old embedding file, generate a new non-duplicated merged embedding file. Default False",
        default=False,
        action="store_true",
    )
    parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
    parser.add_argument("--no_eval", help="Do not compute eval?. Default False", default=False, action="store_true")
    parser.add_argument(
        "--formatter_name",
        type=str,
        help="Name of the formatter to use. You either need to provide this or `config_dataset_path`",
        default=None,
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        help="Name of the dataset to use. You either need to provide this or `config_dataset_path`",
        default=None,
    )
    parser.add_argument(
        "--dataset_path",
        type=str,
        help="Path to the dataset. You either need to provide this or `config_dataset_path`",
        default=None,
    )
    parser.add_argument(
        "--meta_file_train",
        type=str,
        help="Path to the train meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
        default=None,
    )
    parser.add_argument(
        "--meta_file_val",
        type=str,
        help="Path to the evaluation meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
        default=None,
    )
    args = parser.parse_args()

    compute_embeddings(
        args.model_path,
        args.config_path,
        args.output_path,
        old_speakers_file=args.old_file,
        old_append=args.old_append,
        config_dataset_path=args.config_dataset_path,
        formatter_name=args.formatter_name,
        dataset_name=args.dataset_name,
        dataset_path=args.dataset_path,
        meta_file_train=args.meta_file_train,
        meta_file_val=args.meta_file_val,
        disable_cuda=args.disable_cuda,
        no_eval=args.no_eval,
    )