File size: 19,752 Bytes
417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 8846b7a 417b39a 8846b7a 417b39a 810634e 417b39a 3fa12f6 417b39a 3fa12f6 980f805 3fa12f6 980f805 3fa12f6 980f805 3fa12f6 980f805 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 980f805 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 417b39a 3fa12f6 11383a0 417b39a 11383a0 3fa12f6 11383a0 417b39a d4b2a30 59d0e3b d4b2a30 11383a0 980f805 d4b2a30 11383a0 417b39a 11383a0 417b39a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
from __future__ import annotations
from dataclasses import dataclass
import pickle
import os
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
from nlp4web_codebase.ir.data_loaders.dm import Document
from collections import Counter
import tqdm
import re
import nltk
nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords
LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))
def word_splitting(text: str) -> List[str]:
return word_splitter(text.lower())
def lemmatization(words: List[str]) -> List[str]:
return words # We ignore lemmatization here for simplicity
def simple_tokenize(text: str) -> List[str]:
words = word_splitting(text)
tokenized = list(filter(lambda w: w not in stopwords, words))
tokenized = lemmatization(tokenized)
return tokenized
T = TypeVar("T", bound="InvertedIndex")
@dataclass
class PostingList:
term: str # The term
docid_postings: List[int] # docid_postings[i] means the docid (int) of the i-th associated posting
tweight_postings: List[float] # tweight_postings[i] means the term weight (float) of the i-th associated posting
@dataclass
class InvertedIndex:
posting_lists: List[PostingList] # docid -> posting_list
vocab: Dict[str, int]
cid2docid: Dict[str, int] # collection_id -> docid
collection_ids: List[str] # docid -> collection_id
doc_texts: Optional[List[str]] = None # docid -> document text
def save(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
pickle.dump(self, f)
@classmethod
def from_saved(cls: Type[T], saved_dir: str) -> T:
index = cls(
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
)
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
index = pickle.load(f)
return index
# The output of the counting function:
@dataclass
class Counting:
posting_lists: List[PostingList]
vocab: Dict[str, int]
cid2docid: Dict[str, int]
collection_ids: List[str]
dfs: List[int] # tid -> df
dls: List[int] # docid -> doc length
avgdl: float
nterms: int
doc_texts: Optional[List[str]] = None
def run_counting(
documents: Iterable[Document],
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
store_raw: bool = True, # store the document text in doc_texts
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
) -> Counting:
"""Counting TFs, DFs, doc_lengths, etc."""
posting_lists: List[PostingList] = []
vocab: Dict[str, int] = {}
cid2docid: Dict[str, int] = {}
collection_ids: List[str] = []
dfs: List[int] = [] # tid -> df
dls: List[int] = [] # docid -> doc length
nterms: int = 0
doc_texts: Optional[List[str]] = []
for doc in tqdm.tqdm(
documents,
desc="Counting",
total=ndocs,
disable=not show_progress_bar,
):
if doc.collection_id in cid2docid:
continue
collection_ids.append(doc.collection_id)
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
toks = tokenize_fn(doc.text)
tok2tf = Counter(toks)
dls.append(sum(tok2tf.values()))
for tok, tf in tok2tf.items():
nterms += tf
tid = vocab.get(tok, None)
if tid is None:
posting_lists.append(
PostingList(term=tok, docid_postings=[], tweight_postings=[])
)
tid = vocab.setdefault(tok, len(vocab))
posting_lists[tid].docid_postings.append(docid)
posting_lists[tid].tweight_postings.append(tf)
if tid < len(dfs):
dfs[tid] += 1
else:
dfs.append(0)
if store_raw:
doc_texts.append(doc.text)
else:
doc_texts = None
return Counting(
posting_lists=posting_lists,
vocab=vocab,
cid2docid=cid2docid,
collection_ids=collection_ids,
dfs=dfs,
dls=dls,
avgdl=sum(dls) / len(dls),
nterms=nterms,
doc_texts=doc_texts,
)
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
from dataclasses import asdict, dataclass
import math
import os
from typing import Iterable, List, Optional, Type
import tqdm
from nlp4web_codebase.ir.data_loaders.dm import Document
@dataclass
class BM25Index(InvertedIndex):
@staticmethod
def tokenize(text: str) -> List[str]:
return simple_tokenize(text)
@staticmethod
def cache_term_weights(
posting_lists: List[PostingList],
total_docs: int,
avgdl: float,
dfs: List[int],
dls: List[int],
k1: float,
b: float,
) -> None:
"""Compute term weights and caching"""
N = total_docs
for tid, posting_list in enumerate(
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
):
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
for i in range(len(posting_list.docid_postings)):
docid = posting_list.docid_postings[i]
tf = posting_list.tweight_postings[i]
dl = dls[docid]
regularized_tf = BM25Index.calc_regularized_tf(
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
)
posting_list.tweight_postings[i] = regularized_tf * idf
@staticmethod
def calc_regularized_tf(
tf: int, dl: float, avgdl: float, k1: float, b: float
) -> float:
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
@staticmethod
def calc_idf(df: int, N: int):
return math.log(1 + (N - df + 0.5) / (df + 0.5))
@classmethod
def build_from_documents(
cls: Type[BM25Index],
documents: Iterable[Document],
store_raw: bool = True,
output_dir: Optional[str] = None,
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
k1: float = 0.9,
b: float = 0.4,
) -> BM25Index:
# Counting TFs, DFs, doc_lengths, etc.:
counting = run_counting(
documents=documents,
tokenize_fn=BM25Index.tokenize,
store_raw=store_raw,
ndocs=ndocs,
show_progress_bar=show_progress_bar,
)
# Compute term weights and caching:
posting_lists = counting.posting_lists
total_docs = len(counting.cid2docid)
BM25Index.cache_term_weights(
posting_lists=posting_lists,
total_docs=total_docs,
avgdl=counting.avgdl,
dfs=counting.dfs,
dls=counting.dls,
k1=k1,
b=b,
)
# Assembly and save:
index = BM25Index(
posting_lists=posting_lists,
vocab=counting.vocab,
cid2docid=counting.cid2docid,
collection_ids=counting.collection_ids,
doc_texts=counting.doc_texts,
)
return index
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
)
bm25_index.save("output/bm25_index")
from nlp4web_codebase.ir.models import BaseRetriever
from typing import Type
from abc import abstractmethod
class BaseInvertedIndexRetriever(BaseRetriever):
@property
@abstractmethod
def index_class(self) -> Type[InvertedIndex]:
pass
def __init__(self, index_dir: str) -> None:
self.index = self.index_class.from_saved(index_dir)
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
toks = self.index.tokenize(query)
target_docid = self.index.cid2docid[cid]
term_weights = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
if docid == target_docid:
term_weights[tok] = tweight
break
return term_weights
def score(self, query: str, cid: str) -> float:
return sum(self.get_term_weights(query=query, cid=cid).values())
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
toks = self.index.tokenize(query)
docid2score: Dict[int, float] = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
docid2score.setdefault(docid, 0)
docid2score[docid] += tweight
docid2score = dict(
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
)
return {
self.index.collection_ids[docid]: score
for docid, score in docid2score.items()
}
class BM25Retriever(BaseInvertedIndexRetriever):
@property
def index_class(self) -> Type[BM25Index]:
return BM25Index
from nlp4web_codebase.ir.data_loaders import Split
import pytrec_eval
import numpy as np
def evaluate_map(rankings: Dict[str, Dict[str, float]], split=Split.dev) -> float:
metric = "map_cut_10"
qrels = sciq.get_qrels_dict(split)
evaluator = pytrec_eval.RelevanceEvaluator(sciq.get_qrels_dict(split), (metric,))
qps = evaluator.evaluate(rankings)
return float(np.mean([qp[metric] for qp in qps.values()]))
# Loading dataset:
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
# Building BM25 index and save:
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True
)
bm25_index.save("output/bm25_index")
plots_b: Dict[str, List[float]] = {
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
"Y": []
}
plots_k1: Dict[str, List[float]] = {
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
"Y": []
}
## YOUR_CODE_STARTS_HERE
# Step 1: Tune b (with fixed k1=0.9)
for b_val in plots_b["X"]:
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
k1=0.9, # Fix k1
b=b_val
)
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
rankings = {}
for query in sciq.get_split_queries(Split.dev):
ranking = bm25_retriever.retrieve(query=query.text)
rankings[query.query_id] = ranking
map_score = evaluate_map(rankings)
plots_b["Y"].append(map_score)
# Step 2: Tune k1 (with the best b from step 1)
best_b = plots_b["X"][np.argmax(plots_b["Y"])] # Get best b
for k1_val in plots_k1["X"]:
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
k1=k1_val,
b=best_b # Use best b
)
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
rankings = {}
for query in sciq.get_split_queries(Split.dev):
ranking = bm25_retriever.retrieve(query=query.text)
rankings[query.query_id] = ranking
map_score = evaluate_map(rankings)
plots_k1["Y"].append(map_score)
best_b = plots_b["X"][np.argmax(plots_b["Y"])]
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])]
from scipy.sparse._csc import csc_matrix
@dataclass
class CSCInvertedIndex:
posting_lists_matrix: csc_matrix # docid -> posting_list
vocab: Dict[str, int]
cid2docid: Dict[str, int] # collection_id -> docid
collection_ids: List[str] # docid -> collection_id
doc_texts: Optional[List[str]] = None # docid -> document text
def save(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
pickle.dump(self, f)
@classmethod
def from_saved(cls: Type[T], saved_dir: str) -> T:
index = cls(
posting_lists_matrix=None, vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
)
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
index = pickle.load(f)
return index
@dataclass
class CSCBM25Index(CSCInvertedIndex):
@staticmethod
def tokenize(text: str) -> List[str]:
return simple_tokenize(text)
@staticmethod
def cache_term_weights(
posting_lists: List[PostingList],
total_docs: int,
avgdl: float,
dfs: List[int],
dls: List[int],
k1: float,
b: float,
) -> csc_matrix:
"""Compute term weights and caching"""
data = []
indices = []
indptr = [0]
N = total_docs
for tid, posting_list in enumerate(tqdm.tqdm(posting_lists, desc="Regularizing TFs")):
idf = CSCBM25Index.calc_idf(df=dfs[tid], N=N)
for i in range(len(posting_list.docid_postings)):
docid = posting_list.docid_postings[i]
tf = posting_list.tweight_postings[i]
dl = dls[docid]
regularized_tf = CSCBM25Index.calc_regularized_tf(
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
)
weight = regularized_tf * idf
if weight > 1e-6: # Use a small threshold to filter near-zero values #This is the fix
data.append(weight)
indices.append(docid)
indptr.append(len(data))
# Ensure data types are compatible with csc_matrix
data = np.array(data, dtype=np.float64) # or np.float32 if appropriate
indices = np.array(indices, dtype=np.int32) # or np.int64 if appropriate
indptr = np.array(indptr, dtype=np.int32) # or np.int64 if appropriate
return csc_matrix((data, indices, indptr), shape=(total_docs, len(posting_lists)))
## YOUR_CODE_ENDS_HERE
@staticmethod
def calc_regularized_tf(
tf: int, dl: float, avgdl: float, k1: float, b: float
) -> float:
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
@staticmethod
def calc_idf(df: int, N: int):
return math.log(1 + (N - df + 0.5) / (df + 0.5))
@classmethod
def build_from_documents(
cls: Type[CSCBM25Index],
documents: Iterable[Document],
store_raw: bool = True,
output_dir: Optional[str] = None,
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
k1: float = 0.9,
b: float = 0.4,
) -> CSCBM25Index:
# Counting TFs, DFs, doc_lengths, etc.:
counting = run_counting(
documents=documents,
tokenize_fn=CSCBM25Index.tokenize,
store_raw=store_raw,
ndocs=ndocs,
show_progress_bar=show_progress_bar,
)
# Compute term weights and caching:
posting_lists = counting.posting_lists
total_docs = len(counting.cid2docid)
posting_lists_matrix = CSCBM25Index.cache_term_weights(
posting_lists=posting_lists,
total_docs=total_docs,
avgdl=counting.avgdl,
dfs=counting.dfs,
dls=counting.dls,
k1=k1,
b=b,
)
# Assembly and save:
index = CSCBM25Index(
posting_lists_matrix=posting_lists_matrix,
vocab=counting.vocab,
cid2docid=counting.cid2docid,
collection_ids=counting.collection_ids,
doc_texts=counting.doc_texts,
)
return index
csc_bm25_index = CSCBM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
k1=best_k1,
b=best_b
)
csc_bm25_index.save("output/csc_bm25_index")
class BaseCSCInvertedIndexRetriever(BaseRetriever):
@property
@abstractmethod
def index_class(self) -> Type[CSCInvertedIndex]:
pass
def __init__(self, index_dir: str) -> None:
self.index = self.index_class.from_saved(index_dir)
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
## YOUR_CODE_STARTS_HERE
toks = self.index.tokenize(query)
target_docid = self.index.cid2docid[cid]
term_weights = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
# Get weights for the target document from the CSC matrix
weights_for_doc = self.index.posting_lists_matrix.getcol(tid).toarray()[:, 0]
term_weights[tok] = weights_for_doc[target_docid]
return term_weights
## YOUR_CODE_ENDS_HERE
def score(self, query: str, cid: str) -> float:
return sum(self.get_term_weights(query=query, cid=cid).values())
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
## YOUR_CODE_STARTS_HERE
ranking: Dict[str, float] = {}
toks = self.index.tokenize(query)
docid2score: Dict[int, float] = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
tid2documents = self.index.posting_lists_matrix.getcol(tid)
for docid, tweight in zip(tid2documents.indices, tid2documents.data):
docid2score.setdefault(docid, 0)
docid2score[docid] += tweight
docid2score = dict(
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
)
ranking = {
self.index.collection_ids[docid]: score
for docid, score in docid2score.items()
}
return ranking
## YOUR_CODE_ENDS_HERE
class CSCBM25Retriever(BaseCSCInvertedIndexRetriever):
@property
def index_class(self) -> Type[CSCBM25Index]:
return CSCBM25Index
import gradio as gr
from typing import TypedDict
class Hit(TypedDict):
cid: str
score: float
text: str
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
return_type = List[Hit]
## YOUR_CODE_STARTS_HERE
def search(query: str) -> List[Hit]:
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True, # Keep progress bar
k1=best_k1, # Use tuned k1
b=best_b # Use best b
)
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
ranking = bm25_retriever.retrieve(query=query)
hits = []
for cid, score in ranking.items():
doc = next((doc for doc in sciq.corpus if doc.collection_id == cid), None)
if doc:
hits.append({"cid": cid, "score": score, "text": doc.text})
return hits
demo = gr.Interface(
fn=search,
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
outputs=gr.JSON(label="Search Results"),
title="SciQ Search Engine",
description="Enter a query to search the SciQ dataset using BM25.",
)
## YOUR_CODE_ENDS_HERE
demo.launch(share=True) |