File size: 980 Bytes
f3936f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd7cc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import os
import gradio as gr
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from IPython.display import HTML
from base64 import b64encode

pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()

def model(txt, time):
    prompt = txt
    video_duration_seconds = time
    num_frames = video_duration_seconds * 10
    video_frames = pipe(prompt, negative_prompt="low quality",
                        num_inference_steps=25, num_frames=num_frames).frames
    video_path = export_to_video(video_frames)
    return video_path
    
demo = gr.Interface(
    fn=model,
    inputs=["text", gr.Slider(1, 10, step=1)],
    outputs=gr.Video(label="Out",output_width=400, output_height=300)
)

demo.launch()