Spaces:
Runtime error
Runtime error
File size: 3,848 Bytes
f19c1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import warnings
warnings.filterwarnings('ignore')
import subprocess, io, os, sys, time
from loguru import logger
# os.system("pip install diffuser==0.6.0")
# os.system("pip install transformers==4.29.1")
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
if os.environ.get('IS_MY_DEBUG') is None:
result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
print(f'pip install GroundingDINO = {result}')
# result = subprocess.run(['pip', 'list'], check=True)
# print(f'pip list = {result}')
sys.path.insert(0, './GroundingDINO')
import gradio as gr
import argparse
import copy
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont, ImageOps
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
import cv2
import numpy as np
import matplotlib.pyplot as plt
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config as lama_Config
# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download
from utils import computer_info
# relate anything
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
from ram_train_eval import RamModel,RamPredictor
from mmengine.config import Config as mmengine_Config
from app import *
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth'
output_dir = "outputs"
device = 'cpu'
os.makedirs(output_dir, exist_ok=True)
groundingdino_model = None
sam_device = None
sam_model = None
sam_predictor = None
sam_mask_generator = None
sd_pipe = None
lama_cleaner_model= None
ram_model = None
def get_args():
argparser = argparse.ArgumentParser()
argparser.add_argument("--input_image", "-i", type=str, default="", help="")
argparser.add_argument("--text", "-t", type=str, default="", help="")
argparser.add_argument("--output_image", "-o", type=str, default="", help="")
args = argparser.parse_args()
return args
# usage:
# python app_cli.py --input_image dog.png --text dog --output_image dog_remove.png
if __name__ == '__main__':
args = get_args()
logger.info(f'\nargs={args}\n')
logger.info(f'loading models ... ')
# set_device() # If you have enough GPUs, you can open this comment
get_sam_vit_h_4b8939()
load_groundingdino_model()
load_sam_model()
# load_sd_model()
load_lama_cleaner_model()
# load_ram_model()
input_image = Image.open(args.input_image)
output_images, _ = run_anything_task(input_image = input_image,
text_prompt = args.text,
task_type = 'remove',
inpaint_prompt = '',
box_threshold = 0.3,
text_threshold = 0.25,
iou_threshold = 0.8,
inpaint_mode = "merge",
mask_source_radio = "type what to detect below",
remove_mode = "rectangle", # ["segment", "rectangle"]
remove_mask_extend = "10",
num_relation = 5)
if len(output_images) > 0:
logger.info(f'save result to {args.output_image} ... ')
output_images[-1].save(args.output_image)
|