File size: 109,505 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
# coding=utf-8
# Copyright (c) 2021 THUML @ Tsinghua University
# Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Autoformer model."""

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutput,
    ModelOutput,
    SampleTSPredictionOutput,
    Seq2SeqTSPredictionOutput,
)
from ...modeling_utils import PreTrainedModel
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_autoformer import AutoformerConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "AutoformerConfig"


@dataclass
class AutoFormerDecoderOutput(ModelOutput):
    """
    Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Trend tensor for each time series.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
            `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
            input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
    """

    last_hidden_state: torch.FloatTensor = None
    trend: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class AutoformerModelOutput(ModelOutput):
    """
    Autoformer model output that contains the additional trend output.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Trend tensor for each time series.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
            Shift values of each time series' context window which is used to give the model inputs of the same
            magnitude and then used to shift back to the original magnitude.
        scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
            Scaling values of each time series' context window which is used to give the model inputs of the same
            magnitude and then used to rescale back to the original magnitude.
        static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
            Static features of each time series' in a batch which are copied to the covariates at inference time.
    """

    last_hidden_state: torch.FloatTensor = None
    trend: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    loc: Optional[torch.FloatTensor] = None
    scale: Optional[torch.FloatTensor] = None
    static_features: Optional[torch.FloatTensor] = None


AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "huggingface/autoformer-tourism-monthly",
    # See all Autoformer models at https://huggingface.co/models?filter=autoformer
]


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Autoformer
class AutoformerFeatureEmbedder(nn.Module):
    """
    Embed a sequence of categorical features.

    Args:
        cardinalities (`list[int]`):
            List of cardinalities of the categorical features.
        embedding_dims (`list[int]`):
            List of embedding dimensions of the categorical features.
    """

    def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
        super().__init__()

        self.num_features = len(cardinalities)
        self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])

    def forward(self, features: torch.Tensor) -> torch.Tensor:
        if self.num_features > 1:
            # we slice the last dimension, giving an array of length
            # self.num_features with shape (N,T) or (N)
            cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
        else:
            cat_feature_slices = [features]

        return torch.cat(
            [
                embed(cat_feature_slice.squeeze(-1))
                for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)
            ],
            dim=-1,
        )


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeries->Autoformer
class AutoformerStdScaler(nn.Module):
    """
    Standardize features by calculating the mean and scaling along some given dimension `dim`, and then normalizes it
    by subtracting from the mean and dividing by the standard deviation.

    Args:
        dim (`int`):
            Dimension along which to calculate the mean and standard deviation.
        keepdim (`bool`, *optional*, defaults to `False`):
            Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
        minimum_scale (`float`, *optional*, defaults to 1e-5):
            Default scale that is used for elements that are constantly zero along dimension `dim`.
    """

    def __init__(self, dim: int, keepdim: bool = False, minimum_scale: float = 1e-5):
        super().__init__()
        if not dim > 0:
            raise ValueError("Cannot compute scale along dim = 0 (batch dimension), please provide dim > 0")
        self.dim = dim
        self.keepdim = keepdim
        self.minimum_scale = minimum_scale

    @torch.no_grad()
    def forward(self, data: torch.Tensor, weights: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        denominator = weights.sum(self.dim, keepdim=self.keepdim)
        denominator = denominator.clamp_min(1.0)
        loc = (data * weights).sum(self.dim, keepdim=self.keepdim) / denominator

        variance = (((data - loc) * weights) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
        scale = torch.sqrt(variance + self.minimum_scale)
        return (data - loc) / scale, loc, scale


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeries->Autoformer
class AutoformerMeanScaler(nn.Module):
    """
    Computes a scaling factor as the weighted average absolute value along dimension `dim`, and scales the data
    accordingly.

    Args:
        dim (`int`):
            Dimension along which to compute the scale.
        keepdim (`bool`, *optional*, defaults to `False`):
            Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
        default_scale (`float`, *optional*, defaults to `None`):
            Default scale that is used for elements that are constantly zero. If `None`, we use the scale of the batch.
        minimum_scale (`float`, *optional*, defaults to 1e-10):
            Default minimum possible scale that is used for any item.
    """

    def __init__(
        self, dim: int = -1, keepdim: bool = True, default_scale: Optional[float] = None, minimum_scale: float = 1e-10
    ):
        super().__init__()
        self.dim = dim
        self.keepdim = keepdim
        self.minimum_scale = minimum_scale
        self.default_scale = default_scale

    @torch.no_grad()
    def forward(
        self, data: torch.Tensor, observed_indicator: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # shape: (N, [C], T=1)
        ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
        num_observed = observed_indicator.sum(self.dim, keepdim=True)

        scale = ts_sum / torch.clamp(num_observed, min=1)

        # If `default_scale` is provided, we use it, otherwise we use the scale
        # of the batch.
        if self.default_scale is None:
            batch_sum = ts_sum.sum(dim=0)
            batch_observations = torch.clamp(num_observed.sum(0), min=1)
            default_scale = torch.squeeze(batch_sum / batch_observations)
        else:
            default_scale = self.default_scale * torch.ones_like(scale)

        # apply default scale where there are no observations
        scale = torch.where(num_observed > 0, scale, default_scale)

        # ensure the scale is at least `self.minimum_scale`
        scale = torch.clamp(scale, min=self.minimum_scale)
        scaled_data = data / scale

        if not self.keepdim:
            scale = scale.squeeze(dim=self.dim)

        return scaled_data, torch.zeros_like(scale), scale


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeries->Autoformer
class AutoformerNOPScaler(nn.Module):
    """
    Assigns a scaling factor equal to 1 along dimension `dim`, and therefore applies no scaling to the input data.

    Args:
        dim (`int`):
            Dimension along which to compute the scale.
        keepdim (`bool`, *optional*, defaults to `False`):
            Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
    """

    def __init__(self, dim: int, keepdim: bool = False):
        super().__init__()
        self.dim = dim
        self.keepdim = keepdim

    def forward(
        self, data: torch.Tensor, observed_indicator: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
        loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
        return data, loc, scale


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
    """
    Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
    meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.

    Args:
        input_tensor (`torch.FloatTensor`):
            Input tensor, of which the average must be computed.
        weights (`torch.FloatTensor`, *optional*):
            Weights tensor, of the same shape as `input_tensor`.
        dim (`int`, *optional*):
            The dim along which to average `input_tensor`.

    Returns:
        `torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
    """
    if weights is not None:
        weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
        sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
        return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
    else:
        return input_tensor.mean(dim=dim)


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
    """
    Computes the negative log likelihood loss from input distribution with respect to target.
    """
    return -input.log_prob(target)


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Autoformer
class AutoformerSinusoidalPositionalEmbedding(nn.Embedding):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
        super().__init__(num_positions, embedding_dim)
        self.weight = self._init_weight(self.weight)

    @staticmethod
    def _init_weight(out: nn.Parameter) -> nn.Parameter:
        """
        Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
        the 2nd half of the vector. [dim // 2:]
        """
        n_pos, dim = out.shape
        position_enc = np.array(
            [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
        )
        out.requires_grad = False  # set early to avoid an error in pytorch-1.8+
        sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
        out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
        out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
        out.detach_()
        return out

    @torch.no_grad()
    def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions)


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Autoformer
class AutoformerValueEmbedding(nn.Module):
    def __init__(self, feature_size, d_model):
        super().__init__()
        self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False)

    def forward(self, x):
        return self.value_projection(x)


# Class based on
# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L39
# where AutoformerSeriesDecompositionLayer is series_decomp + moving_average
class AutoformerSeriesDecompositionLayer(nn.Module):
    """
    Returns the trend and the seasonal parts of the time series. Calculated as:

        x_trend = AvgPool(Padding(X)) and x_seasonal = X - x_trend
    """

    def __init__(self, config: AutoformerConfig):
        super().__init__()
        self.kernel_size = config.moving_average
        self.avg = nn.AvgPool1d(kernel_size=self.kernel_size, stride=1, padding=0)

    def forward(self, x):
        """Input shape: Batch x Time x EMBED_DIM"""
        # padding on the both ends of time series
        num_of_pads = (self.kernel_size - 1) // 2
        front = x[:, 0:1, :].repeat(1, num_of_pads, 1)
        end = x[:, -1:, :].repeat(1, num_of_pads, 1)
        x_padded = torch.cat([front, x, end], dim=1)

        # calculate the trend and seasonal part of the series
        x_trend = self.avg(x_padded.permute(0, 2, 1)).permute(0, 2, 1)
        x_seasonal = x - x_trend
        return x_seasonal, x_trend


# Class based on
# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L6
# where AutoformerLayernorm is my_Layernorm
class AutoformerLayernorm(nn.Module):
    """
    Special designed layer normalization for the seasonal part, calculated as: AutoformerLayernorm(x) = nn.LayerNorm(x)
    - torch.mean(nn.LayerNorm(x))
    """

    def __init__(self, config: AutoformerConfig):
        super().__init__()
        self.layernorm = nn.LayerNorm(config.d_model)

    def forward(self, x):
        x_hat = self.layernorm(x)
        bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
        return x_hat - bias


class AutoformerAttention(nn.Module):
    """
    AutoCorrelation Mechanism with the following two phases:
        (1) period-based dependencies discovery (2) time delay aggregation
    This block replace the canonical self-attention mechanism.
    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        autocorrelation_factor: int = 3,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

        self.autocorrelation_factor = autocorrelation_factor

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states)
        # get key, value proj
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        # (1) period-based dependencies discovery
        # Resize (truncation or zero filling)
        queries_time_length = query_states.size(1)
        values_time_length = value_states.size(1)
        if queries_time_length > values_time_length:
            query_states = query_states[:, : (queries_time_length - values_time_length), :]
            zeros = torch.zeros_like(query_states).float()
            value_states = torch.cat([value_states, zeros], dim=1)
            key_states = torch.cat([key_states, zeros], dim=1)
        else:
            value_states = value_states[:, :queries_time_length, :]
            key_states = key_states[:, :queries_time_length, :]

        query_states_fft = torch.fft.rfft(query_states, n=tgt_len, dim=1)
        key_states_fft = torch.fft.rfft(key_states, n=tgt_len, dim=1)
        attn_weights = query_states_fft * torch.conj(key_states_fft)
        attn_weights = torch.fft.irfft(attn_weights, n=tgt_len, dim=1)  # Autocorrelation(Q,K)

        src_len = key_states.size(1)
        channel = key_states.size(2)

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, channel):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, channel)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, channel)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, channel)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, channel)
        else:
            attn_weights_reshaped = None

        # time delay aggregation
        time_length = value_states.size(1)
        autocorrelations = attn_weights.view(bsz, self.num_heads, tgt_len, channel)

        # find top k autocorrelations delays
        top_k = int(self.autocorrelation_factor * math.log(time_length))
        autocorrelations_mean_on_head_channel = torch.mean(autocorrelations, dim=(1, -1))  # bsz x tgt_len
        if self.training:
            autocorrelations_mean_on_bsz = torch.mean(autocorrelations_mean_on_head_channel, dim=0)
            _, top_k_delays_index = torch.topk(autocorrelations_mean_on_bsz, top_k)
            top_k_autocorrelations = torch.stack(
                [autocorrelations_mean_on_head_channel[:, top_k_delays_index[i]] for i in range(top_k)], dim=-1
            )
        else:
            top_k_autocorrelations, top_k_delays_index = torch.topk(
                autocorrelations_mean_on_head_channel, top_k, dim=1
            )

        top_k_autocorrelations = torch.softmax(top_k_autocorrelations, dim=-1)  # bsz x top_k

        # compute aggregation: value_states.roll(delay) * top_k_autocorrelations(delay)
        if not self.training:
            # used for compute values_states.roll(delay) in inference
            tmp_values = value_states.repeat(1, 2, 1)
            init_index = (
                torch.arange(time_length)
                .view(1, -1, 1)
                .repeat(bsz * self.num_heads, 1, channel)
                .to(value_states.device)
            )

        delays_agg = torch.zeros_like(value_states).float()  # bsz x time_length x channel
        for i in range(top_k):
            # compute value_states roll delay
            if not self.training:
                tmp_delay = init_index + top_k_delays_index[:, i].view(-1, 1, 1).repeat(
                    self.num_heads, tgt_len, channel
                )
                value_states_roll_delay = torch.gather(tmp_values, dim=1, index=tmp_delay)
            else:
                value_states_roll_delay = value_states.roll(shifts=-int(top_k_delays_index[i]), dims=1)

            # aggregation
            top_k_autocorrelations_at_delay = (
                top_k_autocorrelations[:, i].view(-1, 1, 1).repeat(self.num_heads, tgt_len, channel)
            )
            delays_agg += value_states_roll_delay * top_k_autocorrelations_at_delay

        attn_output = delays_agg.contiguous()

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


class AutoformerEncoderLayer(nn.Module):
    def __init__(self, config: AutoformerConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = AutoformerAttention(
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            autocorrelation_factor=config.autocorrelation_factor,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = AutoformerLayernorm(config)
        self.decomp1 = AutoformerSeriesDecompositionLayer(config)
        self.decomp2 = AutoformerSeriesDecompositionLayer(config)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        layer_head_mask: torch.FloatTensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        # added layer norm here as an improvement
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, _ = self.decomp1(hidden_states)

        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states, _ = self.decomp2(hidden_states)
        hidden_states = self.final_layer_norm(hidden_states)

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class AutoformerDecoderLayer(nn.Module):
    def __init__(self, config: AutoformerConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = AutoformerAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            autocorrelation_factor=config.autocorrelation_factor,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = AutoformerAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            autocorrelation_factor=config.autocorrelation_factor,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = AutoformerLayernorm(config)

        self.decomp1 = AutoformerSeriesDecompositionLayer(config)
        self.decomp2 = AutoformerSeriesDecompositionLayer(config)
        self.decomp3 = AutoformerSeriesDecompositionLayer(config)

        # source: https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/layers/Autoformer_EncDec.py#L128
        self.trend_projection = nn.Conv1d(
            in_channels=self.embed_dim,
            out_channels=config.feature_size,
            kernel_size=3,
            stride=1,
            padding=1,
            padding_mode="circular",
            bias=False,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size `(decoder_attention_heads,)`.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache: (`bool`, *optional*, defaults to `True`):
                Whether or not the model should return the `present_key_value` state to be used for subsequent
                decoding.
        """
        residual = hidden_states

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states, trend1 = self.decomp1(hidden_states)
        # added layer norm here as an improvement
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
            hidden_states = residual + hidden_states
            hidden_states, trend2 = self.decomp2(hidden_states)
            # added layer norm here as an improvement
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states, trend3 = self.decomp3(hidden_states)
        hidden_states = self.final_layer_norm(hidden_states)

        if encoder_hidden_states is not None:
            residual_trend = trend1 + trend2 + trend3
        else:
            residual_trend = trend1 + trend3
        residual_trend = self.trend_projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
        outputs = ((hidden_states, residual_trend),)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class AutoformerPreTrainedModel(PreTrainedModel):
    config_class = AutoformerConfig
    base_model_prefix = "model"
    main_input_name = "past_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, AutoformerSinusoidalPositionalEmbedding):
            pass
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (AutoformerDecoder, AutoformerEncoder)):
            module.gradient_checkpointing = value


AUTOFORMER_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`AutoformerConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

AUTOFORMER_INPUTS_DOCSTRING = r"""
    Args:
        past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Past values of the time series, that serve as context in order to predict the future. These values may
            contain lags, i.e. additional values from the past which are added in order to serve as "extra context".
            The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as
            `static_categorical_features`, `static_real_features`, `past_time_features`).

            The sequence length here is equal to `context_length` + `max(config.lags_sequence)`.

            Missing values need to be replaced with zeros.

        past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`, *optional*):
            Optional time features, which the model internally will add to `past_values`. These could be things like
            "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
            could also be so-called "age" features, which basically help the model know "at which point in life" a
            time-series is. Age features have small values for distant past time steps and increase monotonically the
            more we approach the current time step.

            These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
            the position encodings are learned from scratch internally as parameters of the model, the Time Series
            Transformer requires to provide additional time features.

            The Autoformer only learns additional embeddings for `static_categorical_features`.

        past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in
            `[0, 1]`:

            - 1 for values that are **observed**,
            - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).

        static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
            Optional static categorical features for which the model will learn an embedding, which it will add to the
            values of the time series.

            Static categorical features are features which have the same value for all time steps (static over time).

            A typical example of a static categorical feature is a time series ID.

        static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
            Optional static real features which the model will add to the values of the time series.

            Static real features are features which have the same value for all time steps (static over time).

            A typical example of a static real feature is promotion information.

        future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)`):
            Future values of the time series, that serve as labels for the model. The `future_values` is what the
            Transformer needs to learn to output, given the `past_values`.

            See the demo notebook and code snippets for details.

            Missing values need to be replaced with zeros.

        future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`, *optional*):
            Optional time features, which the model internally will add to `future_values`. These could be things like
            "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
            could also be so-called "age" features, which basically help the model know "at which point in life" a
            time-series is. Age features have small values for distant past time steps and increase monotonically the
            more we approach the current time step.

            These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
            the position encodings are learned from scratch internally as parameters of the model, the Time Series
            Transformer requires to provide additional features.

            The Autoformer only learns additional embeddings for `static_categorical_features`.

        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to
            make sure the model can only look at previous inputs in order to predict the future.

        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.

        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerEncoder(AutoformerPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`AutoformerEncoderLayer`].

    Args:
        config: AutoformerConfig
    """

    def __init__(self, config: AutoformerConfig):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop
        if config.prediction_length is None:
            raise ValueError("The `prediction_length` config needs to be specified.")

        self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
        self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
            config.context_length + config.prediction_length, config.d_model
        )
        self.layers = nn.ModuleList([AutoformerEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states = self.value_embedding(inputs_embeds)
        embed_pos = self.embed_positions(inputs_embeds.size())

        hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != (len(self.layers)):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
                )

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class AutoformerDecoder(AutoformerPreTrainedModel):
    """
    Transformer decoder consisting of `config.decoder_layers` layers. Each layer is a [`AutoformerDecoderLayer`]

    Args:
        config: AutoformerConfig
    """

    def __init__(self, config: AutoformerConfig):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        if config.prediction_length is None:
            raise ValueError("The `prediction_length` config needs to be specified.")

        self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
        self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
            config.context_length + config.prediction_length, config.d_model
        )
        self.layers = nn.ModuleList([AutoformerDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.d_model)

        # https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/models/Autoformer.py#L74
        self.seasonality_projection = nn.Linear(config.d_model, config.feature_size)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            ).to(inputs_embeds.device)

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        trend: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, AutoFormerDecoderOutput]:
        r"""
        Args:
            trend (`torch.FloatTensor` of shape `(batch_size, prediction_length, feature_size)`, *optional*):
                The trend sequence to be fed to the decoder.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
                selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            use_cache (`bool`, *optional*):
                If `use_cache` is True, `past_key_values` key value states are returned and can be used to speed up
                decoding (see `past_key_values`).
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        input_shape = inputs_embeds.size()[:-1]

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])

        hidden_states = self.value_embedding(inputs_embeds)
        embed_pos = self.embed_positions(
            inputs_embeds.size(), past_key_values_length=self.config.context_length - self.config.label_length
        )
        hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != (len(self.layers)):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )

        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:
                    continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, use_cache)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            (hidden_states, residual_trend) = layer_outputs[0]
            trend = trend + residual_trend

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        # project seasonality representation
        hidden_states = self.seasonality_projection(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, trend, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return AutoFormerDecoderOutput(
            last_hidden_state=hidden_states,
            trend=trend,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


@add_start_docstrings(
    "The bare Autoformer Model outputting raw hidden-states without any specific head on top.",
    AUTOFORMER_START_DOCSTRING,
)
class AutoformerModel(AutoformerPreTrainedModel):
    def __init__(self, config: AutoformerConfig):
        super().__init__(config)

        if config.scaling == "mean" or config.scaling is True:
            self.scaler = AutoformerMeanScaler(dim=1, keepdim=True)
        elif config.scaling == "std":
            self.scaler = AutoformerStdScaler(dim=1, keepdim=True)
        else:
            self.scaler = AutoformerNOPScaler(dim=1, keepdim=True)

        if config.num_static_categorical_features > 0:
            self.embedder = AutoformerFeatureEmbedder(
                cardinalities=config.cardinality, embedding_dims=config.embedding_dimension
            )

        # transformer encoder-decoder and mask initializer
        self.encoder = AutoformerEncoder(config)
        self.decoder = AutoformerDecoder(config)

        # used for decoder seasonal and trend initialization
        self.decomposition_layer = AutoformerSeriesDecompositionLayer(config)

        # Initialize weights and apply final processing
        self.post_init()

    @property
    def _past_length(self) -> int:
        return self.config.context_length + max(self.config.lags_sequence)

    def get_lagged_subsequences(
        self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0
    ) -> torch.Tensor:
        """
        Returns lagged subsequences of a given sequence. Returns a tensor of shape (batch_size, subsequences_length,
        feature_size, indices_length), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i,
        -indices[k]-subsequences_length+j, :].

        Args:
            sequence (`torch.Tensor` or shape `(batch_size, context_length,
                feature_size)`): The sequence from which lagged subsequences should be extracted.
            subsequences_length (`int`):
                Length of the subsequences to be extracted.
            shift (`int`, *optional* defaults to 0):
                Shift the lags by this amount back in the time index.
        """

        # calculates the indices of the lags by subtracting the shift value from the given lags_sequence
        indices = [lag - shift for lag in self.config.lags_sequence]

        # checks if the maximum lag plus the length of the subsequences exceeds the length of the input sequence
        sequence_length = sequence.shape[1]
        if max(indices) + subsequences_length > sequence_length:
            raise ValueError(
                f"lags cannot go further than history length, found lag {max(indices)} "
                f"while history length is only {sequence_length}"
            )

        # extracts the lagged subsequences from the input sequence using the calculated indices
        lagged_values = []
        for lag_index in indices:
            begin_index = -lag_index - subsequences_length
            end_index = -lag_index if lag_index > 0 else None
            lagged_values.append(sequence[:, begin_index:end_index, ...])

        # return as stacked tensor in the feature dimension
        return torch.stack(lagged_values, dim=-1)

    def create_network_inputs(
        self,
        past_values: torch.Tensor,
        past_time_features: torch.Tensor,
        static_categorical_features: Optional[torch.Tensor] = None,
        static_real_features: Optional[torch.Tensor] = None,
        past_observed_mask: Optional[torch.Tensor] = None,
        future_values: Optional[torch.Tensor] = None,
        future_time_features: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Creates the inputs for the network given the past and future values, time features, and static features.

        Args:
            past_values (`torch.Tensor`):
                A tensor of shape `(batch_size, past_length, input_size)` containing the past values.
            past_time_features (`torch.Tensor`):
                A tensor of shape `(batch_size, past_length, num_features)` containing the past time features.
            static_categorical_features (`Optional[torch.Tensor]`):
                An optional tensor of shape `(batch_size, num_categorical_features)` containing the static categorical
                features.
            static_real_features (`Optional[torch.Tensor]`):
                An optional tensor of shape `(batch_size, num_real_features)` containing the static real features.
            past_observed_mask (`Optional[torch.Tensor]`):
                An optional tensor of shape `(batch_size, past_length, input_size)` containing the mask of observed
                values in the past.
            future_values (`Optional[torch.Tensor]`):
                An optional tensor of shape `(batch_size, future_length, input_size)` containing the future values.

        Returns:
            A tuple containing the following tensors:
            - reshaped_lagged_sequence (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_lags *
              input_size)` containing the lagged subsequences of the inputs.
            - features (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_features)` containing the
              concatenated static and time features.
            - loc (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the mean of the input
              values.
            - scale (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the std of the input
              values.
            - static_feat (`torch.Tensor`): A tensor of shape `(batch_size, num_static_features)` containing the
              concatenated static features.
        """
        # time feature
        time_feat = (
            torch.cat(
                (
                    past_time_features[:, self._past_length - self.config.context_length :, ...],
                    future_time_features,
                ),
                dim=1,
            )
            if future_values is not None
            else past_time_features[:, self._past_length - self.config.context_length :, ...]
        )

        # target
        if past_observed_mask is None:
            past_observed_mask = torch.ones_like(past_values)

        context = past_values[:, -self.config.context_length :]
        observed_context = past_observed_mask[:, -self.config.context_length :]
        _, loc, scale = self.scaler(context, observed_context)

        inputs = (
            (torch.cat((past_values, future_values), dim=1) - loc) / scale
            if future_values is not None
            else (past_values - loc) / scale
        )

        # static features
        log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p()
        log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log()
        static_feat = torch.cat((log_abs_loc, log_scale), dim=1)

        if static_real_features is not None:
            static_feat = torch.cat((static_real_features, static_feat), dim=1)
        if static_categorical_features is not None:
            embedded_cat = self.embedder(static_categorical_features)
            static_feat = torch.cat((embedded_cat, static_feat), dim=1)
        expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1)

        # all features
        features = torch.cat((expanded_static_feat, time_feat), dim=-1)

        # lagged features
        subsequences_length = (
            self.config.context_length + self.config.prediction_length
            if future_values is not None
            else self.config.context_length
        )
        lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length)
        lags_shape = lagged_sequence.shape
        reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)

        if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]:
            raise ValueError(
                f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match"
            )
        return reshaped_lagged_sequence, features, loc, scale, static_feat

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=AutoformerModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        past_values: torch.Tensor,
        past_time_features: torch.Tensor,
        past_observed_mask: torch.Tensor,
        static_categorical_features: Optional[torch.Tensor] = None,
        static_real_features: Optional[torch.Tensor] = None,
        future_values: Optional[torch.Tensor] = None,
        future_time_features: Optional[torch.Tensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[AutoformerModelOutput, Tuple]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from huggingface_hub import hf_hub_download
        >>> import torch
        >>> from transformers import AutoformerModel

        >>> file = hf_hub_download(
        ...     repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
        ... )
        >>> batch = torch.load(file)

        >>> model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly")

        >>> # during training, one provides both past and future values
        >>> # as well as possible additional features
        >>> outputs = model(
        ...     past_values=batch["past_values"],
        ...     past_time_features=batch["past_time_features"],
        ...     past_observed_mask=batch["past_observed_mask"],
        ...     static_categorical_features=batch["static_categorical_features"],
        ...     future_values=batch["future_values"],
        ...     future_time_features=batch["future_time_features"],
        ... )

        >>> last_hidden_state = outputs.last_hidden_state
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_inputs, temporal_features, loc, scale, static_feat = self.create_network_inputs(
            past_values=past_values,
            past_time_features=past_time_features,
            past_observed_mask=past_observed_mask,
            static_categorical_features=static_categorical_features,
            static_real_features=static_real_features,
            future_values=future_values,
            future_time_features=future_time_features,
        )

        if encoder_outputs is None:
            enc_input = torch.cat(
                (
                    transformer_inputs[:, : self.config.context_length, ...],
                    temporal_features[:, : self.config.context_length, ...],
                ),
                dim=-1,
            )
            encoder_outputs = self.encoder(
                inputs_embeds=enc_input,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        if future_values is not None:
            # Decoder inputs
            # seasonality and trend from context length
            seasonal_input, trend_input = self.decomposition_layer(
                transformer_inputs[:, : self.config.context_length, ...]
            )
            mean = (
                torch.mean(transformer_inputs[:, : self.config.context_length, ...], dim=1)
                .unsqueeze(1)
                .repeat(1, self.config.prediction_length, 1)
            )
            zeros = torch.zeros(
                [transformer_inputs.shape[0], self.config.prediction_length, transformer_inputs.shape[2]],
                device=enc_input.device,
            )

            decoder_input = torch.cat(
                (
                    torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
                    temporal_features[:, self.config.context_length - self.config.label_length :, ...],
                ),
                dim=-1,
            )
            trend_init = torch.cat(
                (
                    torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
                    temporal_features[:, self.config.context_length - self.config.label_length :, ...],
                ),
                dim=-1,
            )

            decoder_outputs = self.decoder(
                trend=trend_init,
                inputs_embeds=decoder_input,
                attention_mask=decoder_attention_mask,
                encoder_hidden_states=encoder_outputs[0],
                head_mask=decoder_head_mask,
                cross_attn_head_mask=cross_attn_head_mask,
                past_key_values=past_key_values,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        else:
            decoder_outputs = AutoFormerDecoderOutput()

        if not return_dict:
            return decoder_outputs + encoder_outputs + (loc, scale, static_feat)

        return AutoformerModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            trend=decoder_outputs.trend,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            loc=loc,
            scale=scale,
            static_features=static_feat,
        )


@add_start_docstrings(
    "The Autoformer Model with a distribution head on top for time-series forecasting.",
    AUTOFORMER_START_DOCSTRING,
)
class AutoformerForPrediction(AutoformerPreTrainedModel):
    def __init__(self, config: AutoformerConfig):
        super().__init__(config)
        self.model = AutoformerModel(config)
        if config.distribution_output == "student_t":
            self.distribution_output = StudentTOutput(dim=config.input_size)
        elif config.distribution_output == "normal":
            self.distribution_output = NormalOutput(dim=config.input_size)
        elif config.distribution_output == "negative_binomial":
            self.distribution_output = NegativeBinomialOutput(dim=config.input_size)
        else:
            raise ValueError(f"Unknown distribution output {config.distribution_output}")

        self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.feature_size)
        self.target_shape = self.distribution_output.event_shape

        if config.loss == "nll":
            self.loss = nll
        else:
            raise ValueError(f"Unknown loss function {config.loss}")

        # Initialize weights of distribution_output and apply final processing
        self.post_init()

    def output_params(self, decoder_output):
        return self.parameter_projection(decoder_output[:, -self.config.prediction_length :, :])

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    @torch.jit.ignore
    def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution:
        sliced_params = params
        if trailing_n is not None:
            sliced_params = [p[:, -trailing_n:] for p in params]
        return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale)

    @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqTSPredictionOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        past_values: torch.Tensor,
        past_time_features: torch.Tensor,
        past_observed_mask: torch.Tensor,
        static_categorical_features: Optional[torch.Tensor] = None,
        static_real_features: Optional[torch.Tensor] = None,
        future_values: Optional[torch.Tensor] = None,
        future_time_features: Optional[torch.Tensor] = None,
        future_observed_mask: Optional[torch.Tensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Seq2SeqTSPredictionOutput, Tuple]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from huggingface_hub import hf_hub_download
        >>> import torch
        >>> from transformers import AutoformerForPrediction

        >>> file = hf_hub_download(
        ...     repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
        ... )
        >>> batch = torch.load(file)

        >>> model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly")

        >>> # during training, one provides both past and future values
        >>> # as well as possible additional features
        >>> outputs = model(
        ...     past_values=batch["past_values"],
        ...     past_time_features=batch["past_time_features"],
        ...     past_observed_mask=batch["past_observed_mask"],
        ...     static_categorical_features=batch["static_categorical_features"],
        ...     static_real_features=batch["static_real_features"],
        ...     future_values=batch["future_values"],
        ...     future_time_features=batch["future_time_features"],
        ... )

        >>> loss = outputs.loss
        >>> loss.backward()

        >>> # during inference, one only provides past values
        >>> # as well as possible additional features
        >>> # the model autoregressively generates future values
        >>> outputs = model.generate(
        ...     past_values=batch["past_values"],
        ...     past_time_features=batch["past_time_features"],
        ...     past_observed_mask=batch["past_observed_mask"],
        ...     static_categorical_features=batch["static_categorical_features"],
        ...     static_real_features=batch["static_real_features"],
        ...     future_time_features=batch["future_time_features"],
        ... )

        >>> mean_prediction = outputs.sequences.mean(dim=1)
        ```"""

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if future_values is not None:
            use_cache = False

        outputs = self.model(
            past_values=past_values,
            past_time_features=past_time_features,
            past_observed_mask=past_observed_mask,
            static_categorical_features=static_categorical_features,
            static_real_features=static_real_features,
            future_values=future_values,
            future_time_features=future_time_features,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            past_key_values=past_key_values,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            use_cache=use_cache,
            return_dict=return_dict,
        )

        prediction_loss = None
        params = None
        if future_values is not None:
            # outputs.last_hidden_state and trend
            # loc is 4rd last and scale is 3rd last output
            params = self.output_params(outputs[0] + outputs[1])
            distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2])

            loss = self.loss(distribution, future_values)

            if future_observed_mask is None:
                future_observed_mask = torch.ones_like(future_values)

            if len(self.target_shape) == 0:
                loss_weights = future_observed_mask
            else:
                loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False)

            prediction_loss = weighted_average(loss, weights=loss_weights)

        if not return_dict:
            outputs = ((params,) + outputs[2:]) if params is not None else outputs[2:]
            return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs

        return Seq2SeqTSPredictionOutput(
            loss=prediction_loss,
            params=params,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            loc=outputs.loc,
            scale=outputs.scale,
            static_features=outputs.static_features,
        )

    @torch.no_grad()
    def generate(
        self,
        past_values: torch.Tensor,
        past_time_features: torch.Tensor,
        future_time_features: torch.Tensor,
        past_observed_mask: Optional[torch.Tensor] = None,
        static_categorical_features: Optional[torch.Tensor] = None,
        static_real_features: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ) -> SampleTSPredictionOutput:
        r"""
        Greedily generate sequences of sample predictions from a model with a probability distribution head.

        Parameters:
            past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
                Past values of the time series, that serve as context in order to predict the future. The sequence size
                of this tensor must be larger than the `context_length` of the model, since the model will use the
                larger size to construct lag features, i.e. additional values from the past which are added in order to
                serve as "extra context".

                The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if
                no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
                look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length
                of the past.

                The `past_values` is what the Transformer encoder gets as input (with optional additional features,
                such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags).

                Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.

                For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number
                of variates in the time series per time step.
            past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
                Required time features, which the model internally will add to `past_values`. These could be things
                like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features).
                These could also be so-called "age" features, which basically help the model know "at which point in
                life" a time-series is. Age features have small values for distant past time steps and increase
                monotonically the more we approach the current time step. Holiday features are also a good example of
                time features.

                These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
                where the position encodings are learned from scratch internally as parameters of the model, the Time
                Series Transformer requires to provide additional time features. The Time Series Transformer only
                learns additional embeddings for `static_categorical_features`.

                Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
                features must but known at prediction time.

                The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
            future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
                Required time features for the prediction window, which the model internally will add to sampled
                predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors
                (for instance as Fourier features). These could also be so-called "age" features, which basically help
                the model know "at which point in life" a time-series is. Age features have small values for distant
                past time steps and increase monotonically the more we approach the current time step. Holiday features
                are also a good example of time features.

                These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
                where the position encodings are learned from scratch internally as parameters of the model, the Time
                Series Transformer requires to provide additional time features. The Time Series Transformer only
                learns additional embeddings for `static_categorical_features`.

                Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
                features must but known at prediction time.

                The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
            past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
                Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
                in `[0, 1]`:

                - 1 for values that are **observed**,
                - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).

            static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
                Optional static categorical features for which the model will learn an embedding, which it will add to
                the values of the time series.

                Static categorical features are features which have the same value for all time steps (static over
                time).

                A typical example of a static categorical feature is a time series ID.
            static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
                Optional static real features which the model will add to the values of the time series.

                Static real features are features which have the same value for all time steps (static over time).

                A typical example of a static real feature is promotion information.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers.

        Return:
            [`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
            samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for
            multivariate predictions.
        """
        outputs = self(
            static_categorical_features=static_categorical_features,
            static_real_features=static_real_features,
            past_time_features=past_time_features,
            past_values=past_values,
            past_observed_mask=past_observed_mask,
            future_time_features=None,
            future_values=None,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
            use_cache=False,
        )

        decoder = self.model.get_decoder()
        enc_last_hidden = outputs.encoder_last_hidden_state
        loc = outputs.loc
        scale = outputs.scale
        static_feat = outputs.static_features

        num_parallel_samples = self.config.num_parallel_samples
        repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
        repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)

        repeated_past_values = (
            past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
        ) / repeated_scale

        time_features = torch.cat((past_time_features, future_time_features), dim=1)

        expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_features.shape[1], -1)
        features = torch.cat((expanded_static_feat, time_features), dim=-1)
        repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)

        repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0)

        lagged_sequence = self.model.get_lagged_subsequences(
            sequence=repeated_past_values, subsequences_length=self.config.context_length
        )
        lags_shape = lagged_sequence.shape
        reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
        seasonal_input, trend_input = self.model.decomposition_layer(reshaped_lagged_sequence)

        mean = torch.mean(reshaped_lagged_sequence, dim=1).unsqueeze(1).repeat(1, self.config.prediction_length, 1)
        zeros = torch.zeros(
            [reshaped_lagged_sequence.shape[0], self.config.prediction_length, reshaped_lagged_sequence.shape[2]],
            device=reshaped_lagged_sequence.device,
        )

        decoder_input = torch.cat(
            (
                torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
                repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
            ),
            dim=-1,
        )
        trend_init = torch.cat(
            (
                torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
                repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
            ),
            dim=-1,
        )
        decoder_outputs = decoder(
            trend=trend_init, inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden
        )
        decoder_last_hidden = decoder_outputs.last_hidden_state
        trend = decoder_outputs.trend
        params = self.output_params(decoder_last_hidden + trend)
        distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
        future_samples = distr.sample()

        return SampleTSPredictionOutput(
            sequences=future_samples.reshape(
                (-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
            )
        )