Spaces:
Running
Running
File size: 83,798 Bytes
3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 3fde652 e929af5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 |
import os
import sys
import json
import base64
import asyncio
import tempfile
import re
from io import BytesIO
from typing import List, Dict, Any, Optional, Tuple
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, PngImagePlugin, ExifTags
import matplotlib.pyplot as plt
import pandas as pd
from transformers import pipeline, AutoProcessor, AutoModelForImageClassification
from huggingface_hub import hf_hub_download
# Create necessary directories
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
#####################################
# Model Definitions #
#####################################
class MLP(torch.nn.Module):
"""A multi-layer perceptron for image feature regression."""
def __init__(self, input_size: int, batch_norm: bool = True):
super().__init__()
self.input_size = input_size
self.layers = torch.nn.Sequential(
torch.nn.Linear(self.input_size, 2048),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.3),
torch.nn.Linear(2048, 512),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, 256),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.2),
torch.nn.Linear(256, 128),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
torch.nn.Dropout(0.1),
torch.nn.Linear(128, 32),
torch.nn.ReLU(),
torch.nn.Linear(32, 1)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.layers(x)
class WaifuScorer:
"""WaifuScorer model that uses CLIP for feature extraction and a custom MLP for scoring."""
def __init__(self, model_path: str = None, device: str = None, cache_dir: str = None, verbose: bool = False):
self.verbose = verbose
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
self.dtype = torch.float32
self.available = False
try:
# Try to import CLIP
try:
import clip
self.clip_available = True
except ImportError:
print("CLIP not available, using alternative feature extractor")
self.clip_available = False
# Set default model path if not provided
if model_path is None:
model_path = "Eugeoter/waifu-scorer-v3/model.pth"
if self.verbose:
print(f"Model path not provided. Using default: {model_path}")
# Download model if not found locally
if not os.path.isfile(model_path):
try:
username, repo_id, model_name = model_path.split("/")
model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
except Exception as e:
print(f"Error downloading model: {e}")
# Fallback to local path
model_path = os.path.join(os.path.dirname(__file__), "models", "waifu_scorer_v3.pth")
if not os.path.exists(model_path):
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# Create a dummy model for testing
self.mlp = MLP(input_size=768)
torch.save(self.mlp.state_dict(), model_path)
if self.verbose:
print(f"Loading WaifuScorer model from: {model_path}")
# Initialize MLP model
self.mlp = MLP(input_size=768)
# Load state dict
try:
if model_path.endswith(".safetensors"):
try:
from safetensors.torch import load_file
state_dict = load_file(model_path)
except ImportError:
state_dict = torch.load(model_path, map_location=self.device)
else:
state_dict = torch.load(model_path, map_location=self.device)
self.mlp.load_state_dict(state_dict)
except Exception as e:
print(f"Error loading model state dict: {e}")
# Initialize with random weights for testing
pass
self.mlp.to(self.device)
self.mlp.eval()
# Load CLIP model for image preprocessing and feature extraction
if self.clip_available:
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
else:
# Use alternative feature extractor
from transformers import CLIPProcessor, CLIPModel
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.preprocess = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.clip_model.to(self.device)
self.available = True
except Exception as e:
print(f"Unable to initialize WaifuScorer: {e}")
self.available = False
@torch.no_grad()
def __call__(self, images):
if not self.available:
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
if isinstance(images, Image.Image):
images = [images]
n = len(images)
# Ensure at least two images for CLIP model compatibility
if n == 1:
images = images * 2
try:
if self.clip_available:
# Original CLIP processing
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
image_batch = torch.cat(image_tensors).to(self.device)
image_features = self.clip_model.encode_image(image_batch)
else:
# Alternative processing with Transformers CLIP
inputs = self.preprocess(images=images, return_tensors="pt").to(self.device)
image_features = self.clip_model.get_image_features(**inputs)
# Normalize features
norm = image_features.norm(2, dim=-1, keepdim=True)
norm[norm == 0] = 1
im_emb = (image_features / norm).to(device=self.device, dtype=self.dtype)
predictions = self.mlp(im_emb)
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
return scores[:n]
except Exception as e:
print(f"Error in WaifuScorer inference: {e}")
return [5.0] * n # Default score instead of None
class AestheticPredictor:
"""Aesthetic Predictor using SiGLIP or other models."""
def __init__(self, model_name="SmilingWolf/aesthetic-predictor-v2-5", device=None):
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
self.model_name = model_name
self.available = False
try:
print(f"Loading Aesthetic Predictor: {model_name}")
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = AutoModelForImageClassification.from_pretrained(model_name)
if torch.cuda.is_available() and self.device == 'cuda':
self.model = self.model.to(torch.bfloat16).cuda()
else:
self.model = self.model.to(self.device)
self.model.eval()
self.available = True
except Exception as e:
print(f"Error loading Aesthetic Predictor: {e}")
self.available = False
@torch.no_grad()
def inference(self, images):
if not self.available:
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
try:
if isinstance(images, list):
images_rgb = [img.convert("RGB") for img in images]
pixel_values = self.processor(images=images_rgb, return_tensors="pt").pixel_values
if torch.cuda.is_available() and self.device == 'cuda':
pixel_values = pixel_values.to(torch.bfloat16).cuda()
else:
pixel_values = pixel_values.to(self.device)
with torch.inference_mode():
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
if scores.ndim == 0:
scores = np.array([scores])
# Scale scores to 0-10 range
scores = scores * 10.0
return scores.tolist()
else:
return self.inference([images])[0]
except Exception as e:
print(f"Error in Aesthetic Predictor inference: {e}")
if isinstance(images, list):
return [5.0] * len(images) # Default score instead of None
else:
return 5.0 # Default score instead of None
class AnimeAestheticEvaluator:
"""Anime Aesthetic Evaluator using ONNX model."""
def __init__(self, model_path=None, device=None):
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
self.available = False
try:
import onnxruntime as rt
# Set default model path if not provided
if model_path is None:
try:
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
except Exception as e:
print(f"Error downloading anime aesthetic model: {e}")
# Fallback to local path
model_path = os.path.join(os.path.dirname(__file__), "models", "anime_aesthetic.onnx")
if not os.path.exists(model_path):
print("Model not found and couldn't be downloaded")
self.available = False
return
# Select provider based on device
if self.device == 'cuda' and 'CUDAExecutionProvider' in rt.get_available_providers():
providers = ['CUDAExecutionProvider']
else:
providers = ['CPUExecutionProvider']
self.model = rt.InferenceSession(model_path, providers=providers)
self.available = True
except Exception as e:
print(f"Error initializing Anime Aesthetic Evaluator: {e}")
self.available = False
def predict(self, images):
if not self.available:
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
if isinstance(images, Image.Image):
images = [images]
try:
results = []
for img in images:
img_np = np.array(img).astype(np.float32) / 255.0
s = 768
h, w = img_np.shape[:2]
if h > w:
new_h, new_w = s, int(s * w / h)
else:
new_h, new_w = int(s * h / w), s
resized = cv2.resize(img_np, (new_w, new_h))
# Center the resized image in a square canvas
canvas = np.zeros((s, s, 3), dtype=np.float32)
pad_h = (s - new_h) // 2
pad_w = (s - new_w) // 2
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
# Prepare input for model
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
# Run inference
pred = self.model.run(None, {"img": input_tensor})[0].item()
# Scale to 0-10
pred = pred * 10.0
results.append(pred)
return results
except Exception as e:
print(f"Error in Anime Aesthetic prediction: {e}")
return [5.0] * len(images) # Default score instead of None
#####################################
# Technical Evaluator Class #
#####################################
class TechnicalEvaluator:
"""
Evaluator for basic technical image quality metrics.
Measures sharpness, noise, artifacts, and other technical aspects.
"""
def __init__(self, config=None):
self.config = config or {}
self.config.setdefault('laplacian_ksize', 3)
self.config.setdefault('blur_threshold', 100)
self.config.setdefault('noise_threshold', 0.05)
def evaluate(self, image_path_or_pil):
"""
Evaluate technical aspects of an image.
Args:
image_path_or_pil: Path to the image file or PIL Image.
Returns:
dict: Dictionary containing technical evaluation scores.
"""
try:
# Load image
if isinstance(image_path_or_pil, str):
img = cv2.imread(image_path_or_pil)
if img is None:
return {
'error': 'Failed to load image',
'overall_technical': 0.0
}
else:
# Convert PIL Image to OpenCV format
img = cv2.cvtColor(np.array(image_path_or_pil), cv2.COLOR_RGB2BGR)
# Convert to grayscale for some calculations
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Calculate sharpness using Laplacian variance
laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=self.config['laplacian_ksize'])
sharpness_score = np.var(laplacian) / 10000 # Normalize
sharpness_score = min(1.0, sharpness_score) # Cap at 1.0
# Calculate noise level
# Using a simple method based on standard deviation in smooth areas
blur = cv2.GaussianBlur(gray, (11, 11), 0)
diff = cv2.absdiff(gray, blur)
noise_level = np.std(diff) / 255.0
noise_score = 1.0 - min(1.0, noise_level / self.config['noise_threshold'])
# Check for compression artifacts
edges = cv2.Canny(gray, 100, 200)
artifact_score = 1.0 - (np.count_nonzero(edges) / (gray.shape[0] * gray.shape[1]))
artifact_score = max(0.0, min(1.0, artifact_score * 2)) # Adjust range
# Calculate color range and saturation
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
saturation = hsv[:, :, 1]
saturation_score = np.mean(saturation) / 255.0
# Calculate contrast
min_val, max_val, _, _ = cv2.minMaxLoc(gray)
contrast_score = (max_val - min_val) / 255.0
# Calculate overall technical score (weighted average)
overall_technical = (
0.3 * sharpness_score +
0.2 * noise_score +
0.2 * artifact_score +
0.15 * saturation_score +
0.15 * contrast_score
)
# Scale to 0-10 range for consistency with other metrics
return {
'sharpness': float(sharpness_score * 10),
'noise': float(noise_score * 10),
'artifacts': float(artifact_score * 10),
'saturation': float(saturation_score * 10),
'contrast': float(contrast_score * 10),
'overall_technical': float(overall_technical * 10)
}
except Exception as e:
print(f"Error in technical evaluation: {e}")
return {
'error': str(e),
'overall_technical': 5.0 # Default score instead of 0
}
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
return {
'id': 'technical',
'name': 'Technical Metrics',
'description': 'Evaluates basic technical aspects of image quality including sharpness, noise, artifacts, saturation, and contrast.',
'version': '1.0',
'metrics': [
{'id': 'sharpness', 'name': 'Sharpness', 'description': 'Measures image clarity and detail'},
{'id': 'noise', 'name': 'Noise', 'description': 'Measures absence of unwanted variations'},
{'id': 'artifacts', 'name': 'Artifacts', 'description': 'Measures absence of compression artifacts'},
{'id': 'saturation', 'name': 'Saturation', 'description': 'Measures color intensity'},
{'id': 'contrast', 'name': 'Contrast', 'description': 'Measures difference between light and dark areas'},
{'id': 'overall_technical', 'name': 'Overall Technical', 'description': 'Combined technical quality score'}
]
}
#####################################
# Aesthetic Evaluator Class #
#####################################
class AestheticEvaluator:
"""
Evaluator for aesthetic image quality.
Uses a combination of rule-based metrics and ML models.
"""
def __init__(self, config=None):
self.config = config or {}
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Initialize aesthetic predictor
try:
self.aesthetic_predictor = AestheticPredictor(device=self.device)
except Exception as e:
print(f"Error initializing Aesthetic Predictor: {e}")
self.aesthetic_predictor = None
# Initialize aesthetic shadow model
try:
self.aesthetic_shadow = pipeline(
"image-classification",
model="NeoChen1024/aesthetic-shadow-v2-backup",
device=self.device
)
except Exception as e:
print(f"Error initializing Aesthetic Shadow: {e}")
self.aesthetic_shadow = None
def evaluate(self, image_path_or_pil):
"""
Evaluate aesthetic aspects of an image.
Args:
image_path_or_pil: Path to the image file or PIL Image.
Returns:
dict: Dictionary containing aesthetic evaluation scores.
"""
try:
# Load image
if isinstance(image_path_or_pil, str):
img = Image.open(image_path_or_pil).convert("RGB")
else:
img = image_path_or_pil.convert("RGB")
# Convert to numpy array for calculations
img_np = np.array(img)
# Calculate color harmony using standard deviation of colors
r, g, b = img_np[:,:,0], img_np[:,:,1], img_np[:,:,2]
color_std = (np.std(r) + np.std(g) + np.std(b)) / 3
color_harmony = min(1.0, color_std / 80.0) # Normalize
# Calculate composition score using rule of thirds
h, w = img_np.shape[:2]
third_h, third_w = h // 3, w // 3
# Create a rule of thirds grid mask
grid_mask = np.zeros((h, w))
for i in range(1, 3):
grid_mask[third_h * i - 5:third_h * i + 5, :] = 1
grid_mask[:, third_w * i - 5:third_w * i + 5] = 1
# Convert to grayscale for edge detection
gray = np.mean(img_np, axis=2).astype(np.uint8)
# Simple edge detection
edges = np.abs(np.diff(gray, axis=0, prepend=0)) + np.abs(np.diff(gray, axis=1, prepend=0))
edges = edges > 30 # Threshold
# Calculate how many edges fall on the rule of thirds lines
thirds_alignment = np.sum(edges * grid_mask) / max(1, np.sum(edges))
composition_score = min(1.0, thirds_alignment * 3) # Scale up for better distribution
# Calculate visual interest using entropy
hist_r = np.histogram(r, bins=256, range=(0, 256))[0] / (h * w)
hist_g = np.histogram(g, bins=256, range=(0, 256))[0] / (h * w)
hist_b = np.histogram(b, bins=256, range=(0, 256))[0] / (h * w)
entropy_r = -np.sum(hist_r[hist_r > 0] * np.log2(hist_r[hist_r > 0]))
entropy_g = -np.sum(hist_g[hist_g > 0] * np.log2(hist_g[hist_g > 0]))
entropy_b = -np.sum(hist_b[hist_b > 0] * np.log2(hist_b[hist_b > 0]))
entropy = (entropy_r + entropy_g + entropy_b) / 3
visual_interest = min(1.0, entropy / 7.5) # Normalize
# Get ML model predictions
aesthetic_predictor_score = 0.5 # Default value
aesthetic_shadow_score = 0.5 # Default value
if self.aesthetic_predictor and self.aesthetic_predictor.available:
try:
aesthetic_predictor_score = self.aesthetic_predictor.inference(img) / 10.0 # Scale to 0-1
except Exception as e:
print(f"Error in Aesthetic Predictor: {e}")
if self.aesthetic_shadow:
try:
shadow_result = self.aesthetic_shadow(img)
# Extract score from result
if isinstance(shadow_result, list) and len(shadow_result) > 0:
shadow_score = shadow_result[0]['score']
aesthetic_shadow_score = shadow_score
except Exception as e:
print(f"Error in Aesthetic Shadow: {e}")
# Calculate overall aesthetic score (weighted average)
overall_aesthetic = (
0.2 * color_harmony +
0.15 * composition_score +
0.15 * visual_interest +
0.25 * aesthetic_predictor_score +
0.25 * aesthetic_shadow_score
)
# Scale to 0-10 range for consistency with other metrics
return {
'color_harmony': float(color_harmony * 10),
'composition': float(composition_score * 10),
'visual_interest': float(visual_interest * 10),
'aesthetic_predictor': float(aesthetic_predictor_score * 10),
'aesthetic_shadow': float(aesthetic_shadow_score * 10),
'overall_aesthetic': float(overall_aesthetic * 10)
}
except Exception as e:
print(f"Error in aesthetic evaluation: {e}")
return {
'error': str(e),
'overall_aesthetic': 5.0 # Default score instead of 0
}
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
return {
'id': 'aesthetic',
'name': 'Aesthetic Assessment',
'description': 'Evaluates aesthetic qualities of images including color harmony, composition, and visual interest.',
'version': '1.0',
'metrics': [
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
{'id': 'aesthetic_predictor', 'name': 'Aesthetic Predictor', 'description': 'Score from Aesthetic Predictor V2.5 model'},
{'id': 'aesthetic_shadow', 'name': 'Aesthetic Shadow', 'description': 'Score from Aesthetic Shadow model'},
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
]
}
#####################################
# Anime Evaluator Class #
#####################################
class AnimeEvaluator:
"""
Specialized evaluator for anime-style images.
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
"""
def __init__(self, config=None):
self.config = config or {}
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Initialize anime aesthetic model
try:
self.anime_aesthetic = AnimeAestheticEvaluator(device=self.device)
except Exception as e:
print(f"Error initializing Anime Aesthetic: {e}")
self.anime_aesthetic = None
# Initialize waifu scorer
try:
self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
except Exception as e:
print(f"Error initializing Waifu Scorer: {e}")
self.waifu_scorer = None
def evaluate(self, image_path_or_pil):
"""
Evaluate anime-specific aspects of an image.
Args:
image_path_or_pil: Path to the image file or PIL Image.
Returns:
dict: Dictionary containing anime-style evaluation scores.
"""
try:
# Load image
if isinstance(image_path_or_pil, str):
img = Image.open(image_path_or_pil).convert("RGB")
else:
img = image_path_or_pil.convert("RGB")
img_np = np.array(img)
# Line quality assessment
gray = np.mean(img_np, axis=2).astype(np.uint8)
# Calculate gradients for edge detection
gx = np.abs(np.diff(gray, axis=1, prepend=0))
gy = np.abs(np.diff(gray, axis=0, prepend=0))
# Combine gradients
edges = np.maximum(gx, gy)
# Strong edges are characteristic of anime
strong_edges = edges > 50
edge_ratio = np.sum(strong_edges) / (gray.shape[0] * gray.shape[1])
# Line quality score - anime typically has a higher proportion of strong edges
line_quality = min(1.0, edge_ratio * 20) # Scale appropriately
# Color palette assessment
pixels = img_np.reshape(-1, 3)
sample_size = min(10000, pixels.shape[0])
indices = np.random.choice(pixels.shape[0], sample_size, replace=False)
sampled_pixels = pixels[indices]
# Calculate color diversity (simplified)
color_std = np.std(sampled_pixels, axis=0)
color_diversity = np.mean(color_std) / 128.0 # Normalize
# Anime often has a good balance of diversity but not excessive
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
# Get ML model predictions
anime_aesthetic_score = 0.5 # Default value
waifu_score = 0.5 # Default value
if self.anime_aesthetic and self.anime_aesthetic.available:
try:
anime_scores = self.anime_aesthetic.predict([img])
anime_aesthetic_score = anime_scores[0] / 10.0 # Scale to 0-1
except Exception as e:
print(f"Error in Anime Aesthetic: {e}")
if self.waifu_scorer and self.waifu_scorer.available:
try:
waifu_scores = self.waifu_scorer([img])
waifu_score = waifu_scores[0] / 10.0 # Scale to 0-1
except Exception as e:
print(f"Error in Waifu Scorer: {e}")
# Style consistency assessment
hsv = np.array(img.convert('HSV'))
saturation = hsv[:,:,1]
value = hsv[:,:,2]
# Calculate statistics
sat_mean = np.mean(saturation) / 255.0
val_mean = np.mean(value) / 255.0
# Anime often has higher saturation and controlled brightness
sat_score = 1.0 - abs(sat_mean - 0.7) * 2 # Ideal around 0.7
val_score = 1.0 - abs(val_mean - 0.6) * 2 # Ideal around 0.6
style_consistency = (sat_score + val_score) / 2
# Overall anime score (weighted average)
overall_anime = (
0.2 * line_quality +
0.15 * color_score +
0.3 * waifu_score +
0.2 * anime_aesthetic_score +
0.15 * style_consistency
)
# Scale to 0-10 range for consistency with other metrics
return {
'line_quality': float(line_quality * 10),
'color_palette': float(color_score * 10),
'character_quality': float(waifu_score * 10),
'anime_aesthetic': float(anime_aesthetic_score * 10),
'style_consistency': float(style_consistency * 10),
'overall_anime': float(overall_anime * 10)
}
except Exception as e:
print(f"Error in anime evaluation: {e}")
return {
'error': str(e),
'overall_anime': 5.0 # Default score instead of 0
}
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
return {
'id': 'anime_specialized',
'name': 'Anime Style Evaluator',
'description': 'Specialized evaluator for anime-style images, focusing on line quality, color palette, character design, and style consistency.',
'version': '1.0',
'metrics': [
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering using Waifu Scorer'},
{'id': 'anime_aesthetic', 'name': 'Anime Aesthetic', 'description': 'Score from specialized anime aesthetic model'},
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
]
}
#####################################
# Metadata Manager Class #
#####################################
class MetadataManager:
"""
Manager for extracting and parsing image metadata.
"""
def __init__(self):
pass
def extract_metadata(self, image_path_or_pil):
"""
Extract metadata from an image.
Args:
image_path_or_pil: Path to the image file or PIL Image.
Returns:
dict: Dictionary containing extracted metadata.
"""
try:
# Load image if path is provided
if isinstance(image_path_or_pil, str):
img = Image.open(image_path_or_pil)
else:
img = image_path_or_pil
# Initialize metadata dictionary
metadata = {
'has_metadata': False,
'prompt': None,
'negative_prompt': None,
'steps': None,
'sampler': None,
'cfg_scale': None,
'seed': None,
'size': None,
'model': None,
'raw_metadata': None
}
# Check for PNG info metadata (Stable Diffusion WebUI)
if 'parameters' in img.info:
metadata['has_metadata'] = True
metadata['raw_metadata'] = img.info['parameters']
# Parse parameters
params = img.info['parameters']
# Extract prompt and negative prompt
neg_prompt_prefix = "Negative prompt:"
if neg_prompt_prefix in params:
parts = params.split(neg_prompt_prefix, 1)
metadata['prompt'] = parts[0].strip()
rest = parts[1].strip()
# Find the next parameter after negative prompt
next_param_match = re.search(r'\n(Steps: |Sampler: |CFG scale: |Seed: |Size: |Model: )', rest)
if next_param_match:
neg_end = next_param_match.start()
metadata['negative_prompt'] = rest[:neg_end].strip()
rest = rest[neg_end:].strip()
else:
metadata['negative_prompt'] = rest
else:
metadata['prompt'] = params
# Extract other parameters
for param in ['Steps', 'Sampler', 'CFG scale', 'Seed', 'Size', 'Model']:
param_match = re.search(rf'{param}: ([^,\n]+)', params)
if param_match:
param_key = param.lower().replace(' ', '_')
metadata[param_key] = param_match.group(1).strip()
# Check for EXIF metadata
elif hasattr(img, '_getexif') and img._getexif():
exif = {
ExifTags.TAGS[k]: v
for k, v in img._getexif().items()
if k in ExifTags.TAGS
}
if 'ImageDescription' in exif and exif['ImageDescription']:
metadata['has_metadata'] = True
metadata['raw_metadata'] = exif['ImageDescription']
# Try to parse as JSON
try:
json_data = json.loads(exif['ImageDescription'])
if 'prompt' in json_data:
metadata['prompt'] = json_data['prompt']
if 'negative_prompt' in json_data:
metadata['negative_prompt'] = json_data['negative_prompt']
# Map other parameters
param_mapping = {
'steps': 'steps',
'sampler': 'sampler',
'cfg_scale': 'cfg_scale',
'seed': 'seed',
'width': 'width',
'height': 'height',
'model': 'model'
}
for json_key, meta_key in param_mapping.items():
if json_key in json_data:
metadata[meta_key] = json_data[json_key]
# Combine width and height for size
if 'width' in json_data and 'height' in json_data:
metadata['size'] = f"{json_data['width']}x{json_data['height']}"
except json.JSONDecodeError:
# Not JSON, try to parse as text
desc = exif['ImageDescription']
metadata['prompt'] = desc
# If no metadata found but image has dimensions, add them
if not metadata['size'] and hasattr(img, 'width') and hasattr(img, 'height'):
metadata['size'] = f"{img.width}x{img.height}"
return metadata
except Exception as e:
print(f"Error extracting metadata: {e}")
return {
'has_metadata': False,
'error': str(e)
}
def update_metadata(self, image, new_metadata):
"""
Update the metadata in an image.
Args:
image: PIL Image.
new_metadata: New metadata string.
Returns:
PIL Image: Image with updated metadata.
"""
if image:
try:
# Create a PngInfo object to store metadata
pnginfo = PngImagePlugin.PngInfo()
pnginfo.add_text("parameters", new_metadata)
# Save the image to a BytesIO object with the updated metadata
output_bytes = BytesIO()
image.save(output_bytes, format="PNG", pnginfo=pnginfo)
output_bytes.seek(0)
# Re-open the image from the BytesIO object
updated_image = Image.open(output_bytes)
return updated_image
except Exception as e:
print(f"Error updating metadata: {e}")
return image
else:
return None
#####################################
# Evaluator Manager Class #
#####################################
class EvaluatorManager:
"""
Manager class for handling multiple evaluators.
Provides a unified interface for evaluating images with different metrics.
"""
def __init__(self):
"""Initialize the evaluator manager with available evaluators."""
self.evaluators = {}
self.metadata_manager = MetadataManager()
self._register_default_evaluators()
def _register_default_evaluators(self):
"""Register the default set of evaluators."""
self.register_evaluator(TechnicalEvaluator())
self.register_evaluator(AestheticEvaluator())
self.register_evaluator(AnimeEvaluator())
def register_evaluator(self, evaluator):
"""
Register a new evaluator.
Args:
evaluator: The evaluator to register.
"""
metadata = evaluator.get_metadata()
self.evaluators[metadata['id']] = evaluator
def get_available_evaluators(self):
"""
Get a list of available evaluators.
Returns:
list: List of evaluator metadata.
"""
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
def evaluate_image(self, image_path_or_pil, evaluator_ids=None):
"""
Evaluate an image using specified evaluators.
Args:
image_path_or_pil: Path to the image file or PIL Image.
evaluator_ids: List of evaluator IDs to use.
If None, all available evaluators will be used.
Returns:
dict: Dictionary containing evaluation results from each evaluator.
"""
# Check if image exists
if isinstance(image_path_or_pil, str) and not os.path.exists(image_path_or_pil):
return {'error': f'Image file not found: {image_path_or_pil}'}
if evaluator_ids is None:
evaluator_ids = list(self.evaluators.keys())
results = {}
# Extract metadata
metadata = self.metadata_manager.extract_metadata(image_path_or_pil)
results['metadata'] = metadata
# Evaluate with each evaluator
for evaluator_id in evaluator_ids:
if evaluator_id in self.evaluators:
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(image_path_or_pil)
else:
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
return results
def batch_evaluate_images(self, image_paths_or_pils, evaluator_ids=None):
"""
Evaluate multiple images using specified evaluators.
Args:
image_paths_or_pils: List of paths to image files or PIL Images.
evaluator_ids: List of evaluator IDs to use.
If None, all available evaluators will be used.
Returns:
list: List of dictionaries containing evaluation results for each image.
"""
return [self.evaluate_image(path_or_pil, evaluator_ids) for path_or_pil in image_paths_or_pils]
def compare_models(self, model_results):
"""
Compare different models based on evaluation results.
Args:
model_results: Dictionary mapping model names to their evaluation results.
Returns:
dict: Comparison results including rankings and best model.
"""
if not model_results:
return {'error': 'No model results provided for comparison'}
# Calculate average scores for each model across all images and evaluators
model_scores = {}
for model_name, image_results in model_results.items():
model_scores[model_name] = {
'technical': 0.0,
'aesthetic': 0.0,
'anime_specialized': 0.0,
'overall': 0.0
}
image_count = len(image_results)
if image_count == 0:
continue
# Sum up scores across all images
for image_id, evaluations in image_results.items():
if 'technical' in evaluations and 'overall_technical' in evaluations['technical']:
model_scores[model_name]['technical'] += evaluations['technical']['overall_technical']
if 'aesthetic' in evaluations and 'overall_aesthetic' in evaluations['aesthetic']:
model_scores[model_name]['aesthetic'] += evaluations['aesthetic']['overall_aesthetic']
if 'anime_specialized' in evaluations and 'overall_anime' in evaluations['anime_specialized']:
model_scores[model_name]['anime_specialized'] += evaluations['anime_specialized']['overall_anime']
# Calculate averages
model_scores[model_name]['technical'] /= image_count
model_scores[model_name]['aesthetic'] /= image_count
model_scores[model_name]['anime_specialized'] /= image_count
# Calculate overall score (weighted average of all metrics)
model_scores[model_name]['overall'] = (
0.3 * model_scores[model_name]['technical'] +
0.4 * model_scores[model_name]['aesthetic'] +
0.3 * model_scores[model_name]['anime_specialized']
)
# Rank models by overall score
rankings = sorted(
[(model, scores['overall']) for model, scores in model_scores.items()],
key=lambda x: x[1],
reverse=True
)
# Format rankings
formatted_rankings = [
{'rank': i+1, 'model': model, 'score': score}
for i, (model, score) in enumerate(rankings)
]
# Determine best model
best_model = rankings[0][0] if rankings else None
# Format comparison metrics
comparison_metrics = {
'technical': {model: scores['technical'] for model, scores in model_scores.items()},
'aesthetic': {model: scores['aesthetic'] for model, scores in model_scores.items()},
'anime_specialized': {model: scores['anime_specialized'] for model, scores in model_scores.items()},
'overall': {model: scores['overall'] for model, scores in model_scores.items()}
}
return {
'best_model': best_model,
'rankings': formatted_rankings,
'comparison_metrics': comparison_metrics
}
#####################################
# Model Manager Class #
#####################################
class ModelManager:
"""
Manages model loading and processing requests using a queue.
"""
def __init__(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {self.device}")
# Initialize evaluator manager
self.evaluator_manager = EvaluatorManager()
# Initialize processing queue
self.processing_queue = asyncio.Queue()
self.worker_task = None
# Create temp directory
self.temp_dir = tempfile.mkdtemp()
async def start_worker(self):
"""Start the background worker task."""
if self.worker_task is None:
self.worker_task = asyncio.create_task(self._worker())
async def _worker(self):
"""Background worker to process image evaluation requests from the queue."""
while True:
request = await self.processing_queue.get()
if request is None: # Shutdown signal
self.processing_queue.task_done()
break
try:
results = await self._process_request(request)
request['results_future'].set_result(results) # Fulfill the future with results
except Exception as e:
request['results_future'].set_exception(e) # Set exception if processing fails
finally:
self.processing_queue.task_done()
async def submit_request(self, request_data):
"""Submit a new image processing request to the queue."""
results_future = asyncio.Future() # Future to hold the results
request = {**request_data, 'results_future': results_future}
await self.processing_queue.put(request)
return await results_future # Wait for and return results
async def _process_request(self, request):
"""Process a single image evaluation request."""
file_paths = request['file_paths']
auto_batch = request['auto_batch']
manual_batch_size = request['manual_batch_size']
selected_evaluators = request['selected_evaluators']
log_events = []
images = []
file_names = []
final_results = []
# Prepare images and file names
total_files = len(file_paths)
log_events.append(f"Starting to load {total_files} images...")
for f in file_paths:
try:
img = Image.open(f).convert("RGB")
images.append(img)
file_names.append(os.path.basename(f))
except Exception as e:
log_events.append(f"Error opening {f}: {e}")
if not images:
log_events.append("No valid images loaded.")
return [], log_events, 0, manual_batch_size
log_events.append("Images loaded. Determining batch size...")
try:
manual_batch_size = int(manual_batch_size) if manual_batch_size is not None else 1
except ValueError:
manual_batch_size = 1
log_events.append("Invalid manual batch size. Defaulting to 1.")
optimal_batch = self.auto_tune_batch_size(images) if auto_batch else manual_batch_size
log_events.append(f"Using batch size: {optimal_batch}")
total_images = len(images)
for i in range(0, total_images, optimal_batch):
batch_images = images[i:i+optimal_batch]
batch_file_paths = file_paths[i:i+optimal_batch]
batch_file_names = file_names[i:i+optimal_batch]
batch_index = i // optimal_batch + 1
log_events.append(f"Processing batch {batch_index}: images {i+1} to {min(i+optimal_batch, total_images)}")
# Process each image in the batch
for j, (img, img_path, img_name) in enumerate(zip(batch_images, batch_file_paths, batch_file_names)):
# Evaluate image with selected evaluators
evaluation_results = self.evaluator_manager.evaluate_image(img_path, selected_evaluators)
# Extract metadata
metadata = evaluation_results.get('metadata', {})
# Calculate final score
scores_to_average = []
for evaluator_id in selected_evaluators:
if evaluator_id in evaluation_results:
if evaluator_id == 'technical' and 'overall_technical' in evaluation_results[evaluator_id]:
scores_to_average.append(evaluation_results[evaluator_id]['overall_technical'])
elif evaluator_id == 'aesthetic' and 'overall_aesthetic' in evaluation_results[evaluator_id]:
scores_to_average.append(evaluation_results[evaluator_id]['overall_aesthetic'])
elif evaluator_id == 'anime_specialized' and 'overall_anime' in evaluation_results[evaluator_id]:
scores_to_average.append(evaluation_results[evaluator_id]['overall_anime'])
final_score = float(np.clip(np.mean(scores_to_average), 0.0, 10.0)) if scores_to_average else 5.0
# Create thumbnail
thumbnail = img.copy()
thumbnail.thumbnail((200, 200))
# Create result
result = {
'file_name': img_name,
'file_path': img_path,
'img_data': self.image_to_base64(thumbnail),
'final_score': final_score,
'metadata': metadata,
}
# Add evaluator results
for evaluator_id in selected_evaluators:
if evaluator_id in evaluation_results:
result[evaluator_id] = evaluation_results[evaluator_id]
final_results.append(result)
log_events.append("All images processed.")
return final_results, log_events, 100, optimal_batch
def image_to_base64(self, image: Image.Image) -> str:
"""Convert PIL Image to base64 encoded JPEG string."""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def auto_tune_batch_size(self, images: list) -> int:
"""Automatically determine the optimal batch size for processing."""
# For simplicity, use a fixed batch size
# In a real implementation, this would test different batch sizes
return min(4, len(images))
#####################################
# Gradio Interface #
#####################################
# Initialize evaluator manager and model manager
evaluator_manager = EvaluatorManager()
model_manager = ModelManager()
# Global variables to store uploaded images and results
uploaded_images = {}
evaluation_results = {}
def extract_metadata_from_image(image):
"""
Extract metadata from an uploaded image.
Args:
image: Uploaded image.
Returns:
tuple: (image, metadata)
"""
if image is None:
return None, ""
metadata_manager = MetadataManager()
metadata = metadata_manager.extract_metadata(image)
if metadata['has_metadata']:
return image, metadata['raw_metadata'] or ""
else:
return image, "No metadata found in image."
def update_image_metadata(image, new_metadata):
"""
Update metadata in an image.
Args:
image: Image to update.
new_metadata: New metadata string.
Returns:
tuple: (updated_image, metadata)
"""
if image is None:
return None, ""
metadata_manager = MetadataManager()
updated_image = metadata_manager.update_metadata(image, new_metadata)
return updated_image, new_metadata
def evaluate_images(images, model_name, selected_evaluators):
"""
Evaluate uploaded images using selected evaluators.
Args:
images: List of uploaded image files.
model_name: Name of the model that generated these images.
selected_evaluators: List of evaluator IDs to use.
Returns:
str: Status message.
"""
global uploaded_images, evaluation_results
if not images:
return "No images uploaded."
if not model_name:
model_name = "unknown_model"
# Save uploaded images
if model_name not in uploaded_images:
uploaded_images[model_name] = []
image_paths = []
for img in images:
# Save image to temporary file
img_path = f"/tmp/image_evaluator_uploads/{model_name}_{len(uploaded_images[model_name])}.png"
os.makedirs(os.path.dirname(img_path), exist_ok=True)
Image.open(img).save(img_path)
# Add to uploaded images
uploaded_images[model_name].append({
'path': img_path,
'id': f"{model_name}_{len(uploaded_images[model_name])}"
})
image_paths.append(img_path)
# Evaluate images
if not selected_evaluators:
selected_evaluators = ['technical', 'aesthetic', 'anime_specialized']
results = {}
for i, img_path in enumerate(image_paths):
img_id = uploaded_images[model_name][i]['id']
results[img_id] = evaluator_manager.evaluate_image(img_path, selected_evaluators)
# Store results
if model_name not in evaluation_results:
evaluation_results[model_name] = {}
evaluation_results[model_name].update(results)
return f"Evaluated {len(images)} images for model '{model_name}'."
async def evaluate_images_async(images, model_name, selected_evaluators, auto_batch=True, batch_size=4):
"""
Asynchronously evaluate uploaded images using selected evaluators.
Args:
images: List of uploaded image files.
model_name: Name of the model that generated these images.
selected_evaluators: List of evaluator IDs to use.
auto_batch: Whether to automatically determine batch size.
batch_size: Manual batch size if auto_batch is False.
Returns:
tuple: (results, log, progress, batch_size)
"""
if not images:
return [], ["No images uploaded."], 0, batch_size
if not model_name:
model_name = "unknown_model"
# Start worker if not already running
await model_manager.start_worker()
# Prepare request
request_data = {
'file_paths': images,
'auto_batch': auto_batch,
'manual_batch_size': batch_size,
'selected_evaluators': selected_evaluators
}
# Submit request and wait for results
results, log_events, progress, actual_batch_size = await model_manager.submit_request(request_data)
# Store results in global variable
if results:
global evaluation_results
if model_name not in evaluation_results:
evaluation_results[model_name] = {}
for result in results:
img_id = f"{model_name}_{os.path.basename(result['file_path'])}"
evaluation_data = {
'metadata': result.get('metadata', {}),
'technical': result.get('technical', {}),
'aesthetic': result.get('aesthetic', {}),
'anime_specialized': result.get('anime_specialized', {})
}
evaluation_results[model_name][img_id] = evaluation_data
# Create results table HTML
results_table_html = create_results_table(results)
return results_table_html, log_events, progress, actual_batch_size
def compare_models():
"""
Compare models based on evaluation results.
Returns:
tuple: (comparison table HTML, overall chart, radar chart)
"""
global evaluation_results
if not evaluation_results or len(evaluation_results) < 2:
return "Need at least two models with evaluated images for comparison.", None, None
# Compare models
comparison = evaluator_manager.compare_models(evaluation_results)
# Create comparison table
models = list(evaluation_results.keys())
metrics = ['technical', 'aesthetic', 'anime_specialized', 'overall']
data = []
for model in models:
row = {'Model': model}
for metric in metrics:
if metric in comparison['comparison_metrics'] and model in comparison['comparison_metrics'][metric]:
row[metric.capitalize()] = comparison['comparison_metrics'][metric][model]
else:
row[metric.capitalize()] = 0.0
data.append(row)
df = pd.DataFrame(data)
# Add ranking information
for rank_info in comparison['rankings']:
if rank_info['model'] in df['Model'].values:
df.loc[df['Model'] == rank_info['model'], 'Rank'] = rank_info['rank']
# Sort by rank
df = df.sort_values('Rank')
# Create overall comparison chart
plt.figure(figsize=(10, 6))
overall_scores = [comparison['comparison_metrics']['overall'].get(model, 0) for model in models]
bars = plt.bar(models, overall_scores, color='skyblue')
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.2f}', ha='center', va='bottom')
plt.title('Overall Quality Scores by Model')
plt.xlabel('Model')
plt.ylabel('Score')
plt.ylim(0, 10.5)
plt.grid(axis='y', linestyle='--', alpha=0.7)
# Save the chart
overall_chart_path = "/tmp/image_evaluator_results/overall_comparison.png"
os.makedirs(os.path.dirname(overall_chart_path), exist_ok=True)
plt.savefig(overall_chart_path)
plt.close()
# Create radar chart
categories = [m.capitalize() for m in metrics[:-1]] # Exclude 'overall'
N = len(categories)
# Create angles for each metric
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1] # Close the loop
# Create radar chart
plt.figure(figsize=(10, 10))
ax = plt.subplot(111, polar=True)
# Add lines for each model
colors = plt.cm.tab10(np.linspace(0, 1, len(models)))
for i, model in enumerate(models):
values = [comparison['comparison_metrics'][metric].get(model, 0) for metric in metrics[:-1]]
values += values[:1] # Close the loop
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model, color=colors[i])
ax.fill(angles, values, alpha=0.1, color=colors[i])
# Set category labels
plt.xticks(angles[:-1], categories)
# Set y-axis limits
ax.set_ylim(0, 10)
# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
plt.title('Detailed Metrics Comparison by Model')
# Save the chart
radar_chart_path = "/tmp/image_evaluator_results/radar_comparison.png"
plt.savefig(radar_chart_path)
plt.close()
# Create result message
result_message = f"Best model: {comparison['best_model']}\n\nModel rankings:\n"
for rank in comparison['rankings']:
result_message += f"{rank['rank']}. {rank['model']} (score: {rank['score']:.2f})\n"
return result_message, overall_chart_path, radar_chart_path
def create_results_table(results):
"""
Create an HTML table with results and image previews.
Args:
results: List of evaluation results.
Returns:
str: HTML table.
"""
if not results:
return "No results to display."
# Sort results by final score (descending)
sorted_results = sorted(results, key=lambda x: x.get('final_score', 0), reverse=True)
# Create HTML table
html = """
<style>
.results-table {
width: 100%;
border-collapse: collapse;
font-family: Arial, sans-serif;
}
.results-table th, .results-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.results-table th {
background-color: #f2f2f2;
position: sticky;
top: 0;
}
.results-table tr:nth-child(even) {
background-color: #f9f9f9;
}
.results-table tr:hover {
background-color: #f1f1f1;
}
.image-preview {
max-width: 150px;
max-height: 150px;
}
.score {
font-weight: bold;
}
.high-score {
color: green;
}
.medium-score {
color: orange;
}
.low-score {
color: red;
}
.metadata-cell {
max-width: 300px;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
}
.metadata-cell:hover {
white-space: normal;
overflow: visible;
}
</style>
<table class="results-table">
<thead>
<tr>
<th>Preview</th>
<th>File Name</th>
<th>Final Score</th>
<th>Technical</th>
<th>Aesthetic</th>
<th>Anime</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
"""
for result in sorted_results:
# Determine score class
score = result.get('final_score', 0)
if score >= 7.5:
score_class = "high-score"
elif score >= 5:
score_class = "medium-score"
else:
score_class = "low-score"
# Get technical score
technical_score = "N/A"
if 'technical' in result and 'overall_technical' in result['technical']:
technical_score = f"{result['technical']['overall_technical']:.2f}"
# Get aesthetic score
aesthetic_score = "N/A"
if 'aesthetic' in result and 'overall_aesthetic' in result['aesthetic']:
aesthetic_score = f"{result['aesthetic']['overall_aesthetic']:.2f}"
# Get anime score
anime_score = "N/A"
if 'anime_specialized' in result and 'overall_anime' in result['anime_specialized']:
anime_score = f"{result['anime_specialized']['overall_anime']:.2f}"
# Get prompt from metadata
prompt = "N/A"
if 'metadata' in result and result['metadata'].get('prompt'):
prompt = result['metadata']['prompt']
# Add row to table
html += f"""
<tr>
<td><img src="data:image/jpeg;base64,{result['img_data']}" class="image-preview"></td>
<td>{result['file_name']}</td>
<td class="score {score_class}">{score:.2f}</td>
<td>{technical_score}</td>
<td>{aesthetic_score}</td>
<td>{anime_score}</td>
<td class="metadata-cell">{prompt}</td>
</tr>
"""
html += """
</tbody>
</table>
"""
return html
def export_results(format_type):
"""
Export evaluation results to file.
Args:
format_type: Export format ('csv', 'json', 'html', or 'markdown').
Returns:
str: Path to exported file.
"""
global evaluation_results
if not evaluation_results:
return "No evaluation results to export."
# Create output directory
output_dir = "/tmp/image_evaluator_results"
os.makedirs(output_dir, exist_ok=True)
# Compare models if multiple models are available
if len(evaluation_results) >= 2:
comparison = evaluator_manager.compare_models(evaluation_results)
else:
comparison = None
# Create DataFrame for the results
models = list(evaluation_results.keys())
metrics = ['technical', 'aesthetic', 'anime_specialized', 'overall']
if comparison:
data = []
for model in models:
row = {'Model': model}
for metric in metrics:
if metric in comparison['comparison_metrics'] and model in comparison['comparison_metrics'][metric]:
row[metric.capitalize()] = comparison['comparison_metrics'][metric][model]
else:
row[metric.capitalize()] = 0.0
data.append(row)
df = pd.DataFrame(data)
# Add ranking information
for rank_info in comparison['rankings']:
if rank_info['model'] in df['Model'].values:
df.loc[df['Model'] == rank_info['model'], 'Rank'] = rank_info['rank']
# Sort by rank
df = df.sort_values('Rank')
else:
# Single model, create detailed results
model = models[0]
data = []
for img_id, results in evaluation_results[model].items():
row = {'Image': img_id}
# Add metadata if available
if 'metadata' in results and results['metadata'].get('prompt'):
row['Prompt'] = results['metadata']['prompt']
# Add evaluator results
for evaluator_id in ['technical', 'aesthetic', 'anime_specialized']:
if evaluator_id in results:
for metric, value in results[evaluator_id].items():
if isinstance(value, (int, float)):
row[f"{evaluator_id}_{metric}"] = value
data.append(row)
df = pd.DataFrame(data)
# Export based on format
if format_type == 'csv':
output_path = os.path.join(output_dir, 'evaluation_results.csv')
df.to_csv(output_path, index=False)
elif format_type == 'json':
output_path = os.path.join(output_dir, 'evaluation_results.json')
if comparison:
export_data = {
'comparison': comparison,
'results': evaluation_results
}
else:
export_data = evaluation_results
with open(output_path, 'w') as f:
json.dump(export_data, f, indent=2)
elif format_type == 'html':
output_path = os.path.join(output_dir, 'evaluation_results.html')
# Create HTML with both table and visualizations
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Image Evaluation Results</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
h1, h2 { color: #333; }
.container { margin-bottom: 30px; }
table { border-collapse: collapse; width: 100%; }
th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }
th { background-color: #f2f2f2; }
tr:nth-child(even) { background-color: #f9f9f9; }
.chart { margin: 20px 0; max-width: 800px; }
.best-model { font-weight: bold; color: green; }
</style>
</head>
<body>
<h1>Image Evaluation Results</h1>
"""
if comparison:
html_content += f"""
<div class="container">
<h2>Model Comparison</h2>
<p class="best-model">Best model: {comparison['best_model']}</p>
<table>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Overall Score</th>
<th>Technical</th>
<th>Aesthetic</th>
<th>Anime</th>
</tr>
"""
for rank in comparison['rankings']:
model = rank['model']
html_content += f"""
<tr>
<td>{rank['rank']}</td>
<td>{model}</td>
<td>{rank['score']:.2f}</td>
<td>{comparison['comparison_metrics']['technical'].get(model, 0):.2f}</td>
<td>{comparison['comparison_metrics']['aesthetic'].get(model, 0):.2f}</td>
<td>{comparison['comparison_metrics']['anime_specialized'].get(model, 0):.2f}</td>
</tr>
"""
html_content += """
</table>
</div>
"""
# Add charts
html_content += """
<div class="container">
<h2>Visualizations</h2>
<div class="chart">
<h3>Overall Scores</h3>
<img src="overall_comparison.png" alt="Overall Scores Chart">
</div>
<div class="chart">
<h3>Detailed Metrics</h3>
<img src="radar_comparison.png" alt="Radar Chart">
</div>
</div>
"""
# Save charts
plt.figure(figsize=(10, 6))
overall_scores = [comparison['comparison_metrics']['overall'].get(model, 0) for model in models]
bars = plt.bar(models, overall_scores, color='skyblue')
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.01, f'{height:.2f}', ha='center', va='bottom')
plt.title('Overall Quality Scores by Model')
plt.xlabel('Model')
plt.ylabel('Score')
plt.ylim(0, 10.5)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.savefig(os.path.join(output_dir, 'overall_comparison.png'))
plt.close()
# Create radar chart
categories = [m.capitalize() for m in metrics[:-1]]
N = len(categories)
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
plt.figure(figsize=(10, 10))
ax = plt.subplot(111, polar=True)
colors = plt.cm.tab10(np.linspace(0, 1, len(models)))
for i, model in enumerate(models):
values = [comparison['comparison_metrics'][metric].get(model, 0) for metric in metrics[:-1]]
values += values[:1]
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model, color=colors[i])
ax.fill(angles, values, alpha=0.1, color=colors[i])
plt.xticks(angles[:-1], categories)
ax.set_ylim(0, 10)
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
plt.title('Detailed Metrics Comparison by Model')
plt.savefig(os.path.join(output_dir, 'radar_comparison.png'))
plt.close()
# Add detailed results for each model
for model in models:
html_content += f"""
<div class="container">
<h2>Detailed Results: {model}</h2>
<table>
<tr>
<th>Image</th>
<th>Technical</th>
<th>Aesthetic</th>
<th>Anime</th>
<th>Prompt</th>
</tr>
"""
for img_id, results in evaluation_results[model].items():
technical = results.get('technical', {}).get('overall_technical', 'N/A')
aesthetic = results.get('aesthetic', {}).get('overall_aesthetic', 'N/A')
anime = results.get('anime_specialized', {}).get('overall_anime', 'N/A')
prompt = results.get('metadata', {}).get('prompt', 'N/A')
if isinstance(technical, (int, float)):
technical = f"{technical:.2f}"
if isinstance(aesthetic, (int, float)):
aesthetic = f"{aesthetic:.2f}"
if isinstance(anime, (int, float)):
anime = f"{anime:.2f}"
html_content += f"""
<tr>
<td>{img_id}</td>
<td>{technical}</td>
<td>{aesthetic}</td>
<td>{anime}</td>
<td>{prompt}</td>
</tr>
"""
html_content += """
</table>
</div>
"""
html_content += """
</body>
</html>
"""
with open(output_path, 'w') as f:
f.write(html_content)
elif format_type == 'markdown':
output_path = os.path.join(output_dir, 'evaluation_results.md')
md_content = "# Image Evaluation Results\n\n"
if comparison:
md_content += f"## Model Comparison\n\n**Best model: {comparison['best_model']}**\n\n"
md_content += "| Rank | Model | Overall Score | Technical | Aesthetic | Anime |\n"
md_content += "|------|-------|--------------|-----------|-----------|-------|\n"
for rank in comparison['rankings']:
model = rank['model']
md_content += f"| {rank['rank']} | {model} | {rank['score']:.2f} | "
md_content += f"{comparison['comparison_metrics']['technical'].get(model, 0):.2f} | "
md_content += f"{comparison['comparison_metrics']['aesthetic'].get(model, 0):.2f} | "
md_content += f"{comparison['comparison_metrics']['anime_specialized'].get(model, 0):.2f} |\n"
md_content += "\n"
# Add detailed results for each model
for model in models:
md_content += f"## Detailed Results: {model}\n\n"
md_content += "| Image | Technical | Aesthetic | Anime | Prompt |\n"
md_content += "|-------|-----------|-----------|-------|--------|\n"
for img_id, results in evaluation_results[model].items():
technical = results.get('technical', {}).get('overall_technical', 'N/A')
aesthetic = results.get('aesthetic', {}).get('overall_aesthetic', 'N/A')
anime = results.get('anime_specialized', {}).get('overall_anime', 'N/A')
prompt = results.get('metadata', {}).get('prompt', 'N/A')
if isinstance(technical, (int, float)):
technical = f"{technical:.2f}"
if isinstance(aesthetic, (int, float)):
aesthetic = f"{aesthetic:.2f}"
if isinstance(anime, (int, float)):
anime = f"{anime:.2f}"
# Truncate prompt if too long
if len(str(prompt)) > 50:
prompt = str(prompt)[:47] + "..."
md_content += f"| {img_id} | {technical} | {aesthetic} | {anime} | {prompt} |\n"
md_content += "\n"
with open(output_path, 'w') as f:
f.write(md_content)
else:
return f"Unsupported format: {format_type}"
return output_path
def reset_data():
"""Reset all uploaded images and evaluation results."""
global uploaded_images, evaluation_results
uploaded_images = {}
evaluation_results = {}
return "All data has been reset."
def create_interface():
"""Create Gradio interface."""
# Get available evaluators
available_evaluators = evaluator_manager.get_available_evaluators()
evaluator_choices = [e['id'] for e in available_evaluators]
with gr.Blocks(title="Image Evaluator") as interface:
gr.Markdown("# Image Evaluator")
gr.Markdown("Tool for evaluating and comparing images generated by different AI models")
with gr.Tab("Upload & Evaluate"):
with gr.Row():
with gr.Column(scale=1):
images_input = gr.File(file_count="multiple", label="Upload Images")
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
auto_batch = gr.Checkbox(label="Auto Batch Size", value=True)
batch_size = gr.Number(label="Batch Size (if Auto is off)", value=4, precision=0)
evaluate_button = gr.Button("Evaluate Images")
with gr.Column(scale=2):
with gr.Row():
evaluation_output = gr.Textbox(label="Evaluation Status")
progress = gr.Number(label="Progress (%)", value=0, precision=0)
log_output = gr.Textbox(label="Processing Log", lines=10)
results_table = gr.HTML(label="Results Table")
with gr.Tab("Compare Models"):
with gr.Row():
compare_button = gr.Button("Compare Models")
with gr.Row():
with gr.Column():
comparison_output = gr.Textbox(label="Comparison Results")
with gr.Column():
overall_chart = gr.Image(label="Overall Scores")
radar_chart = gr.Image(label="Detailed Metrics")
with gr.Tab("Metadata Viewer"):
with gr.Row():
with gr.Column():
metadata_image_input = gr.Image(type="pil", label="Upload Image for Metadata")
with gr.Column():
metadata_output = gr.Textbox(label="Image Metadata", lines=10)
with gr.Row():
copy_metadata_button = gr.Button("Copy Metadata")
update_metadata_button = gr.Button("Update Metadata")
with gr.Tab("Export Results"):
with gr.Row():
format_select = gr.Radio(choices=["csv", "json", "html", "markdown"], label="Export Format", value="html")
export_button = gr.Button("Export Results")
with gr.Row():
export_output = gr.Textbox(label="Export Status")
with gr.Tab("Help"):
gr.Markdown("""
## How to Use Image Evaluator
### Step 1: Upload Images
- Go to the "Upload & Evaluate" tab
- Upload images for a specific model
- Enter the model name
- Select which evaluators to use
- Click "Evaluate Images"
- Repeat for each model you want to compare
### Step 2: Compare Models
- Go to the "Compare Models" tab
- Click "Compare Models" to see results
- The best model will be highlighted
- View charts for visual comparison
### Step 3: View Metadata
- Go to the "Metadata Viewer" tab
- Upload an image to view its metadata
- Edit metadata if needed
### Step 4: Export Results
- Go to the "Export Results" tab
- Select export format (CSV, JSON, HTML, or Markdown)
- Click "Export Results"
- Download the exported file
### Available Metrics
#### Technical Metrics
- Sharpness: Measures image clarity and detail
- Noise: Measures absence of unwanted variations
- Artifacts: Measures absence of compression artifacts
- Saturation: Measures color intensity
- Contrast: Measures difference between light and dark areas
#### Aesthetic Metrics
- Color Harmony: Measures how well colors work together
- Composition: Measures adherence to compositional principles
- Visual Interest: Measures how visually engaging the image is
- Aesthetic Predictor: Score from Aesthetic Predictor V2.5 model
- Aesthetic Shadow: Score from Aesthetic Shadow model
#### Anime-Specific Metrics
- Line Quality: Measures clarity and quality of line work
- Color Palette: Evaluates color choices for anime style
- Character Quality: Assesses character design and rendering using Waifu Scorer
- Anime Aesthetic: Score from specialized anime aesthetic model
- Style Consistency: Measures adherence to anime style conventions
""")
with gr.Row():
reset_button = gr.Button("Reset All Data")
reset_output = gr.Textbox(label="Reset Status")
# Event handlers
evaluate_button.click(
fn=lambda *args: asyncio.create_task(evaluate_images_async(*args)),
inputs=[images_input, model_name_input, evaluator_select, auto_batch, batch_size],
outputs=[results_table, log_output, progress, batch_size]
)
compare_button.click(
compare_models,
inputs=[],
outputs=[comparison_output, overall_chart, radar_chart]
)
metadata_image_input.change(
extract_metadata_from_image,
inputs=[metadata_image_input],
outputs=[metadata_image_input, metadata_output]
)
update_metadata_button.click(
update_image_metadata,
inputs=[metadata_image_input, metadata_output],
outputs=[metadata_image_input, metadata_output]
)
copy_metadata_button.click(
lambda x: x,
inputs=[metadata_output],
outputs=[metadata_output]
)
export_button.click(
export_results,
inputs=[format_select],
outputs=[export_output]
)
reset_button.click(
reset_data,
inputs=[],
outputs=[reset_output]
)
return interface
# Create and launch the interface
interface = create_interface()
if __name__ == "__main__":
# Import re here to avoid circular import
interface.launch(server_name="0.0.0.0")
|