File size: 7,522 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import logging
from typing import Union, List, Optional

import torch
from PIL import Image

logger = logging.getLogger(__name__)  # pylint: disable=invalid-name

T2V_CINEMATIC_PROMPT = """You are an expert cinematic director with many award winning movies, When writing prompts based on the user input, focus on detailed, chronological descriptions of actions and scenes.

Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph.

Start directly with the action, and keep descriptions literal and precise.

Think like a cinematographer describing a shot list.

Do not change the user input intent, just enhance it.

Keep within 150 words.

For best results, build your prompts using this structure:

Start with main action in a single sentence

Add specific details about movements and gestures

Describe character/object appearances precisely

Include background and environment details

Specify camera angles and movements

Describe lighting and colors

Note any changes or sudden events

Do not exceed the 150 word limit!

Output the enhanced prompt only.

"""

I2V_CINEMATIC_PROMPT = """You are an expert cinematic director with many award winning movies, When writing prompts based on the user input, focus on detailed, chronological descriptions of actions and scenes.

Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph.

Start directly with the action, and keep descriptions literal and precise.

Think like a cinematographer describing a shot list.

Keep within 150 words.

For best results, build your prompts using this structure:

Describe the image first and then add the user input. Image description should be in first priority! Align to the image caption if it contradicts the user text input.

Start with main action in a single sentence

Add specific details about movements and gestures

Describe character/object appearances precisely

Include background and environment details

Specify camera angles and movements

Describe lighting and colors

Note any changes or sudden events

Align to the image caption if it contradicts the user text input.

Do not exceed the 150 word limit!

Output the enhanced prompt only.

"""


def tensor_to_pil(tensor):
    # Ensure tensor is in range [-1, 1]
    assert tensor.min() >= -1 and tensor.max() <= 1

    # Convert from [-1, 1] to [0, 1]
    tensor = (tensor + 1) / 2

    # Rearrange from [C, H, W] to [H, W, C]
    tensor = tensor.permute(1, 2, 0)

    # Convert to numpy array and then to uint8 range [0, 255]
    numpy_image = (tensor.cpu().numpy() * 255).astype("uint8")

    # Convert to PIL Image
    return Image.fromarray(numpy_image)


def generate_cinematic_prompt(

    image_caption_model,

    image_caption_processor,

    prompt_enhancer_model,

    prompt_enhancer_tokenizer,

    prompt: Union[str, List[str]],

    images: Optional[List] = None,

    max_new_tokens: int = 256,

) -> List[str]:
    prompts = [prompt] if isinstance(prompt, str) else prompt

    if images is None:
        prompts = _generate_t2v_prompt(
            prompt_enhancer_model,
            prompt_enhancer_tokenizer,
            prompts,
            max_new_tokens,
            T2V_CINEMATIC_PROMPT,
        )
    else:

        prompts = _generate_i2v_prompt(
            image_caption_model,
            image_caption_processor,
            prompt_enhancer_model,
            prompt_enhancer_tokenizer,
            prompts,
            images,
            max_new_tokens,
            I2V_CINEMATIC_PROMPT,
        )

    return prompts


def _get_first_frames_from_conditioning_item(conditioning_item) -> List[Image.Image]:
    frames_tensor = conditioning_item.media_item
    return [
        tensor_to_pil(frames_tensor[i, :, 0, :, :])
        for i in range(frames_tensor.shape[0])
    ]


def _generate_t2v_prompt(

    prompt_enhancer_model,

    prompt_enhancer_tokenizer,

    prompts: List[str],

    max_new_tokens: int,

    system_prompt: str,

) -> List[str]:
    messages = [
        [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": f"user_prompt: {p}"},
        ]
        for p in prompts
    ]

    texts = [
        prompt_enhancer_tokenizer.apply_chat_template(
            m, tokenize=False, add_generation_prompt=True
        )
        for m in messages
    ]

    out_prompts = []
    for text in texts:
        model_inputs = prompt_enhancer_tokenizer(text, return_tensors="pt").to(
            prompt_enhancer_model.device
        )
        out_prompts.append(_generate_and_decode_prompts(prompt_enhancer_model, prompt_enhancer_tokenizer, model_inputs, max_new_tokens)[0])

    return out_prompts

def _generate_i2v_prompt(

    image_caption_model,

    image_caption_processor,

    prompt_enhancer_model,

    prompt_enhancer_tokenizer,

    prompts: List[str],

    first_frames: List[Image.Image],

    max_new_tokens: int,

    system_prompt: str,

) -> List[str]:
    image_captions = _generate_image_captions(
        image_caption_model, image_caption_processor, first_frames
    )
    if len(image_captions) == 1 and len(image_captions) < len(prompts):
        image_captions *= len(prompts)
    messages = [
        [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": f"user_prompt: {p}\nimage_caption: {c}"},
        ]
        for p, c in zip(prompts, image_captions)
    ]

    texts = [
        prompt_enhancer_tokenizer.apply_chat_template(
            m, tokenize=False, add_generation_prompt=True
        )
        for m in messages
    ]
    out_prompts = []
    for text in texts:
        model_inputs = prompt_enhancer_tokenizer(text, return_tensors="pt").to(
            prompt_enhancer_model.device
        )
        out_prompts.append(_generate_and_decode_prompts(prompt_enhancer_model, prompt_enhancer_tokenizer, model_inputs, max_new_tokens)[0])

    return out_prompts


def _generate_image_captions(

    image_caption_model,

    image_caption_processor,

    images: List[Image.Image],

    system_prompt: str = "<DETAILED_CAPTION>",

) -> List[str]:
    image_caption_prompts = [system_prompt] * len(images)
    inputs = image_caption_processor(
        image_caption_prompts, images, return_tensors="pt"
    ).to("cuda") #.to(image_caption_model.device)

    with torch.inference_mode():
        generated_ids = image_caption_model.generate(
            input_ids=inputs["input_ids"],
            pixel_values=inputs["pixel_values"],
            max_new_tokens=1024,
            do_sample=False,
            num_beams=3,
        )

    return image_caption_processor.batch_decode(generated_ids, skip_special_tokens=True)


def _generate_and_decode_prompts(

    prompt_enhancer_model, prompt_enhancer_tokenizer, model_inputs, max_new_tokens: int

) -> List[str]:
    with torch.inference_mode():
        outputs = prompt_enhancer_model.generate(
            **model_inputs,  max_new_tokens=max_new_tokens
        )
        generated_ids = [
            output_ids[len(input_ids) :]
            for input_ids, output_ids in zip(model_inputs.input_ids, outputs)
        ]
        decoded_prompts = prompt_enhancer_tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True
        )

    return decoded_prompts