File size: 6,797 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
--vace-1-3B--vace-1-3B# Command Line Reference

This document covers all available command line options for WanGP.

## Basic Usage

```bash

# Default launch 

python wgp.py



# Specific model modes

python wgp.py --i2v           # Image-to-video

python wgp.py --t2v           # Text-to-video (default)

python wgp.py --t2v-14B       # 14B text-to-video model

python wgp.py --t2v-1-3B      # 1.3B text-to-video model

python wgp.py --i2v-14B       # 14B image-to-video model

python wgp.py --i2v-1-3B      # Fun InP 1.3B image-to-video model

python wgp.py --vace-1-3B     # VACE ControlNet 1.3B model

```

## Model and Performance Options

### Model Configuration
```bash

--quantize-transformer BOOL   # Enable/disable transformer quantization (default: True)

--compile                     # Enable PyTorch compilation (requires Triton)

--attention MODE              # Force attention mode: sdpa, flash, sage, sage2

--profile NUMBER              # Performance profile 1-5 (default: 4)

--preload NUMBER              # Preload N MB of diffusion model in VRAM

--fp16                        # Force fp16 instead of bf16 models

--gpu DEVICE                  # Run on specific GPU device (e.g., "cuda:1")

```

### Performance Profiles
- **Profile 1**: Load entire current model in VRAM and keep all unused models in reserved RAM for fast VRAM tranfers 
- **Profile 2**: Load model parts as needed, keep all unused models in reserved RAM for fast VRAM tranfers
- **Profile 3**: Load entire current model in VRAM (requires 24GB for 14B model)
- **Profile 4**: Default and recommended, load model parts as needed, most flexible option
- **Profile 5**: Minimum RAM usage

### Memory Management
```bash

--perc-reserved-mem-max FLOAT # Max percentage of RAM for reserved memory (< 0.5)

```

## Lora Configuration

```bash

--lora-dir PATH              # Path to Wan t2v loras directory

--lora-dir-i2v PATH          # Path to Wan i2v loras directory

--lora-dir-hunyuan PATH      # Path to Hunyuan t2v loras directory

--lora-dir-hunyuan-i2v PATH  # Path to Hunyuan i2v loras directory

--lora-dir-ltxv PATH         # Path to LTX Video loras directory

--lora-preset PRESET         # Load lora preset file (.lset) on startup

--check-loras                # Filter incompatible loras (slower startup)

```

## Generation Settings

### Basic Generation
```bash

--seed NUMBER                # Set default seed value

--frames NUMBER              # Set default number of frames to generate

--steps NUMBER               # Set default number of denoising steps

--advanced                   # Launch with advanced mode enabled

```

### Advanced Generation
```bash

--teacache MULTIPLIER        # TeaCache speed multiplier: 0, 1.5, 1.75, 2.0, 2.25, 2.5

```

## Interface and Server Options

### Server Configuration
```bash

--server-port PORT           # Gradio server port (default: 7860)

--server-name NAME           # Gradio server name (default: localhost)

--listen                     # Make server accessible on network

--share                      # Create shareable HuggingFace URL for remote access

--open-browser               # Open browser automatically when launching

```

### Interface Options
```bash

--lock-config                # Prevent modifying video engine configuration from interface

--theme THEME_NAME           # UI theme: "default" or "gradio"

```

## File and Directory Options

```bash

--settings PATH              # Path to folder containing default settings for all models

--verbose LEVEL              # Information level 0-2 (default: 1)

```

## Examples

### Basic Usage Examples
```bash

# Launch with specific model and loras

python wgp.py --t2v-14B --lora-preset mystyle.lset



# High-performance setup with compilation

python wgp.py --compile --attention sage2 --profile 3



# Low VRAM setup

python wgp.py --t2v-1-3B --profile 4 --attention sdpa



# Multiple images with custom lora directory

python wgp.py --i2v --multiple-images --lora-dir /path/to/shared/loras

```

### Server Configuration Examples
```bash

# Network accessible server

python wgp.py --listen --server-port 8080



# Shareable server with custom theme

python wgp.py --share --theme gradio --open-browser



# Locked configuration for public use

python wgp.py --lock-config --share

```

### Advanced Performance Examples
```bash

# Maximum performance (requires high-end GPU)

python wgp.py --compile --attention sage2 --profile 3 --preload 2000



# Optimized for RTX 2080Ti

python wgp.py --profile 4 --attention sdpa --teacache 2.0



# Memory-efficient setup

python wgp.py --fp16 --profile 4 --perc-reserved-mem-max 0.3

```

### TeaCache Configuration
```bash

# Different speed multipliers

python wgp.py --teacache 1.5   # 1.5x speed, minimal quality loss

python wgp.py --teacache 2.0   # 2x speed, some quality loss

python wgp.py --teacache 2.5   # 2.5x speed, noticeable quality loss

python wgp.py --teacache 0     # Disable TeaCache

```

## Attention Modes

### SDPA (Default)
```bash

python wgp.py --attention sdpa

```
- Available by default with PyTorch
- Good compatibility with all GPUs
- Moderate performance

### Sage Attention
```bash

python wgp.py --attention sage

```
- Requires Triton installation
- 30% faster than SDPA
- Small quality cost

### Sage2 Attention
```bash

python wgp.py --attention sage2

```
- Requires Triton and SageAttention 2.x
- 40% faster than SDPA
- Best performance option

### Flash Attention
```bash

python wgp.py --attention flash

```
- May require CUDA kernel compilation
- Good performance
- Can be complex to install on Windows

## Troubleshooting Command Lines

### Fallback to Basic Setup
```bash

# If advanced features don't work

python wgp.py --attention sdpa --profile 4 --fp16

```

### Debug Mode
```bash

# Maximum verbosity for troubleshooting

python wgp.py --verbose 2 --check-loras

```

### Memory Issue Debugging
```bash

# Minimal memory usage

python wgp.py --profile 4 --attention sdpa --perc-reserved-mem-max 0.2

```



## Configuration Files

### Settings Files
Load custom settings:
```bash

python wgp.py --settings /path/to/settings/folder

```

### Lora Presets
Create and share lora configurations:
```bash

# Load specific preset

python wgp.py --lora-preset anime_style.lset



# With custom lora directory

python wgp.py --lora-preset mystyle.lset --lora-dir /shared/loras

```

## Environment Variables

While not command line options, these environment variables can affect behavior:
- `CUDA_VISIBLE_DEVICES` - Limit visible GPUs
- `PYTORCH_CUDA_ALLOC_CONF` - CUDA memory allocation settings
- `TRITON_CACHE_DIR` - Triton cache directory (for Sage attention)