File size: 17,279 Bytes
9d9638e 0dec37b 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 0dec37b 9d9638e 8949c1a 9d9638e 8949c1a 0dec37b 9d9638e 0dec37b 8949c1a 9d9638e 8949c1a 9d9638e 0dec37b 8949c1a 0dec37b 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 0dec37b 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 9d9638e 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 9d9638e 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 0dec37b 8949c1a 9d9638e 8949c1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import os
import sys
import json
from pathlib import Path
import tempfile
import shutil
# Safe imports with fallbacks
try:
import gradio as gr
except ImportError:
print("Installing gradio...")
os.system(f"{sys.executable} -m pip install gradio")
import gradio as gr
try:
import subprocess
except ImportError:
subprocess = None
try:
import torch
HAS_TORCH = True
except ImportError:
HAS_TORCH = False
print("PyTorch not available, using CPU mode")
# Ensure temp directories exist
TEMP_DIR = tempfile.gettempdir()
HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache")
os.makedirs(HF_CACHE_DIR, exist_ok=True)
# Set environment variables safely
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR
os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
def safe_import(module_name, package_name=None):
"""Safely import a module with fallback"""
if package_name is None:
package_name = module_name
try:
return __import__(module_name.replace("-", "_"))
except ImportError:
print(f"Module {module_name} not found, functionality limited")
return None
def setup_environment():
"""Setup environment with error handling"""
dependencies = [
"sageattention==1.0.6",
"insightface",
"facexlib",
"diffusers>=0.30.0",
"transformers>=4.44.0",
"accelerate>=0.34.0",
"xformers",
"opencv-python",
"imageio[ffmpeg]",
"moviepy",
"librosa",
"soundfile"
]
for dep in dependencies:
try:
module_name = dep.split("==")[0].split(">=")[0].split("[")[0]
safe_import(module_name)
except Exception as e:
print(f"Could not process {dep}: {e}")
if subprocess:
try:
subprocess.run(
[sys.executable, "-m", "pip", "install", dep],
check=False,
capture_output=True,
timeout=30
)
except Exception as install_error:
print(f"Failed to install {dep}: {install_error}")
def download_essential_models():
"""Pre-download models with full error handling"""
try:
from huggingface_hub import snapshot_download
print("Attempting to download Hunyuan Video Avatar models...")
try:
snapshot_download(
repo_id="tencent/HunyuanVideo-Avatar",
cache_dir=HF_CACHE_DIR,
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
ignore_patterns=["*.mp4", "*.avi", "*.mov"],
resume_download=True,
max_workers=2
)
except Exception as e:
print(f"Could not download HunyuanVideo-Avatar: {e}")
try:
snapshot_download(
repo_id="tencent/HunyuanVideo",
cache_dir=HF_CACHE_DIR,
allow_patterns=["*.safetensors", "*.json", "*.txt"],
ignore_patterns=["*.mp4", "*.avi"],
resume_download=True,
max_workers=2
)
except Exception as e:
print(f"Could not download HunyuanVideo: {e}")
print("Model download attempt completed")
except ImportError:
print("huggingface_hub not available, skipping model download")
except Exception as e:
print(f"Model download error: {e}")
def create_hf_config():
"""Create config with error handling"""
config = {
"model_settings": {
"profile": 3,
"quantize_transformer": True,
"attention_mode": "sage",
"compile": False,
"teacache": "2.0"
},
"avatar_settings": {
"max_frames": 120,
"resolution": "512x512",
"emotion_control": True,
"multi_character": True
},
"memory_optimization": {
"enable_vae_tiling": True,
"enable_cpu_offload": True,
"max_batch_size": 1,
"gradient_checkpointing": True
},
"audio_processing": {
"sample_rate": 16000,
"max_duration": 15,
"supported_formats": ["wav", "mp3", "m4a"]
}
}
config_path = os.path.join(TEMP_DIR, "hf_config.json")
try:
with open(config_path, "w", encoding='utf-8') as f:
json.dump(config, f, indent=2)
except Exception as e:
print(f"Could not save config: {e}")
config_path = None
return config
def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512):
"""Create a dummy video file for testing"""
try:
import numpy as np
import cv2
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for i in range(duration * fps):
# Create gradient frame
frame = np.ones((height, width, 3), dtype=np.uint8) * 50
text = f"Frame {i+1}"
cv2.putText(frame, text, (width//4, height//2),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
out.write(frame)
out.release()
return True
except Exception as e:
print(f"Could not create video with OpenCV: {e}")
# Create empty file as fallback
try:
with open(output_path, 'wb') as f:
f.write(b'dummy video content')
return True
except:
return False
class WanGPInterface:
"""WanGP Interface with full error handling"""
def __init__(self, config):
self.config = config or {}
self.device = "cpu"
if HAS_TORCH:
try:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
except:
self.device = "cpu"
self.models_loaded = False
def load_models(self):
"""Load models with error handling"""
if self.models_loaded:
return True
try:
print("Loading Hunyuan Video Avatar models (placeholder)...")
# Placeholder for actual model loading
import time
time.sleep(0.5) # Simulate loading
self.models_loaded = True
print("β
Models loaded successfully (simulated)!")
return True
except Exception as e:
print(f"Error in model loading: {e}")
self.models_loaded = False
return False
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
"""Generate avatar video with comprehensive error handling"""
try:
# Validate inputs
if audio_file is None:
return None, "β Error: No audio file provided"
if avatar_image is None:
return None, "β Error: No avatar image provided"
# Ensure model is loaded
if not self.load_models():
print("Models not loaded, using dummy generation")
# Create output path
output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4"
output_path = os.path.join(TEMP_DIR, output_filename)
# Create dummy video
if create_dummy_video(output_path, duration=5):
if os.path.exists(output_path):
return output_path, "β
Video generated successfully (demo mode)!"
else:
return None, "β Error: Failed to create output file"
else:
return None, "β Error: Video generation failed"
except Exception as e:
error_msg = f"β Error in avatar generation: {str(e)}"
print(error_msg)
return None, error_msg
def generate_video(self, prompt, duration=5, resolution="512x512"):
"""Generate video from text with error handling"""
try:
if not prompt:
return "β Error: No prompt provided"
# Parse resolution
try:
width, height = map(int, resolution.split('x'))
except:
width, height = 512, 512
# Ensure model is loaded
if not self.load_models():
print("Models not loaded, using dummy generation")
# Create output path
output_filename = f"video_{os.getpid()}_{id(self)}.mp4"
output_path = os.path.join(TEMP_DIR, output_filename)
# Create dummy video
if create_dummy_video(output_path, duration=int(duration), width=width, height=height):
if os.path.exists(output_path):
return output_path, f"β
Generated video for prompt: {prompt[:50]}..."
else:
return None, "β Error: Failed to create output file"
else:
return None, "β Error: Video generation failed"
except Exception as e:
error_msg = f"β Error in video generation: {str(e)}"
print(error_msg)
return None, error_msg
def create_gradio_interface(wangp_interface):
"""Create Gradio interface with error handling"""
try:
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>π WanGP v6.3 - Hunyuan Video Avatar</h1>
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
<p style="color: orange;">β οΈ Running in Demo Mode - Using placeholder outputs</p>
</div>
""")
with gr.Tabs():
# Avatar Generation Tab
with gr.TabItem("π Avatar Generation"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="filepath"
)
avatar_image = gr.Image(
label="Avatar Image",
type="filepath"
)
emotion_control = gr.Dropdown(
choices=["neutral", "happy", "sad", "angry", "surprised"],
value="neutral",
label="Emotion Control"
)
avatar_prompt = gr.Textbox(
label="Additional Prompt (Optional)",
placeholder="Describe additional details...",
value=""
)
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
with gr.Column():
avatar_output = gr.Video(label="Generated Avatar Video")
avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready")
# Text-to-Video Tab
with gr.TabItem("πΉ Text to Video"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(
label="Video Prompt",
placeholder="Describe the video you want to generate...",
lines=3,
value=""
)
duration_slider = gr.Slider(
minimum=2,
maximum=10,
value=5,
step=1,
label="Duration (seconds)"
)
resolution_dropdown = gr.Dropdown(
choices=["512x512", "768x768", "1024x1024"],
value="512x512",
label="Resolution"
)
generate_video_btn = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video")
video_status = gr.Textbox(label="Status", interactive=False, value="Ready")
# Event handlers with error handling
def safe_avatar_generation(*args):
try:
return wangp_interface.generate_avatar_video(*args)
except Exception as e:
return None, f"β Unexpected error: {str(e)}"
def safe_video_generation(*args):
try:
result = wangp_interface.generate_video(*args)
if isinstance(result, tuple):
return result
else:
return None, result
except Exception as e:
return None, f"β Unexpected error: {str(e)}"
generate_avatar_btn.click(
fn=safe_avatar_generation,
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
outputs=[avatar_output, avatar_status]
)
generate_video_btn.click(
fn=safe_video_generation,
inputs=[video_prompt, duration_slider, resolution_dropdown],
outputs=[video_output, video_status]
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; color: #666;">
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
<p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p>
</div>
""")
return demo
except Exception as e:
print(f"Error creating Gradio interface: {e}")
# Return minimal interface
demo = gr.Interface(
fn=lambda x: f"Error: {str(e)}",
inputs="text",
outputs="text",
title="WanGP v6.3 - Error State"
)
return demo
def main():
"""Main function with comprehensive error handling"""
print("π Starting WanGP v6.3 with Hunyuan Video Avatar...")
try:
# Setup environment
setup_environment()
except Exception as e:
print(f"Environment setup warning: {e}")
try:
# Create configuration
config = create_hf_config()
except Exception as e:
print(f"Config creation warning: {e}")
config = {}
try:
# Download models in background
download_essential_models()
except Exception as e:
print(f"Model download skipped: {e}")
try:
# Initialize WanGP interface
wangp_interface = WanGPInterface(config)
except Exception as e:
print(f"Interface initialization error: {e}")
# Create minimal interface
class MinimalInterface:
def __init__(self):
self.config = {}
def generate_avatar_video(self, *args):
return None, "Service temporarily unavailable"
def generate_video(self, *args):
return None, "Service temporarily unavailable"
wangp_interface = MinimalInterface()
try:
# Create and launch Gradio interface
demo = create_gradio_interface(wangp_interface)
print("β
Setup complete! Launching application...")
# Launch with error handling
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)),
share=False,
debug=False,
show_error=True,
prevent_thread_lock=False
)
except Exception as e:
print(f"β Failed to launch Gradio: {e}")
print("Attempting fallback launch...")
try:
# Minimal fallback
import gradio as gr
gr.Interface(
fn=lambda x: "System Error - Please restart",
inputs="text",
outputs="text"
).launch()
except:
print("β Complete failure. Exiting.")
sys.exit(1)
if __name__ == "__main__":
main() |