Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,402 Bytes
1cfe513 9e9b867 1c47184 9e9b867 1c47184 9e9b867 58e272a 2317674 9e9b867 0cdbe8f 9e9b867 58e272a 9e9b867 58e272a 9e9b867 58e272a 9e9b867 58e272a 9e9b867 85ff42c 58e272a 85ff42c 58e272a 85ff42c e354b27 85ff42c 6360699 85ff42c 6360699 85ff42c 9e9b867 a7a5221 9e9b867 85ff42c 9e9b867 85ff42c 9e9b867 6360699 9e9b867 6360699 9e9b867 2317674 9e9b867 2317674 9e9b867 2317674 9e9b867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import random
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ
torch.cuda.empty_cache()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋
embedding_model = SentenceTransformer('sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens')
# ์ํคํผ๋์ ๋ฐ์ดํฐ์
๋ก๋
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna")
print("Wikipedia dataset loaded:", wiki_dataset)
# ๋ฐ์ดํฐ์
์ ์ง๋ฌธ๋ค์ ์๋ฒ ๋ฉ
questions = wiki_dataset['train']['question'][:10000] # ์ฒ์ 10000๊ฐ๋ง ์ฌ์ฉ
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
def find_relevant_context(query, top_k=3):
# ์ฟผ๋ฆฌ ์๋ฒ ๋ฉ
query_embedding = embedding_model.encode(query, convert_to_tensor=True)
# ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
similarities = cosine_similarity(
query_embedding.cpu().numpy().reshape(1, -1),
question_embeddings.cpu().numpy()
)[0]
# ๊ฐ์ฅ ์ ์ฌํ ์ง๋ฌธ๋ค์ ์ธ๋ฑ์ค
top_indices = np.argsort(similarities)[-top_k:][::-1]
# ๊ด๋ จ ์ปจํ
์คํธ ์ถ์ถ
relevant_contexts = []
for idx in top_indices:
relevant_contexts.append({
'question': questions[idx],
'answer': wiki_dataset['train']['answer'][idx]
})
return relevant_contexts
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
# RAG: ๊ด๋ จ ์ปจํ
์คํธ ์ฐพ๊ธฐ
relevant_contexts = find_relevant_context(message)
context_prompt = "\n\n๊ด๋ จ ์ฐธ๊ณ ์ ๋ณด:\n"
for ctx in relevant_contexts:
context_prompt += f"Q: {ctx['question']}\nA: {ctx['answer']}\n\n"
# ๋ํ ํ์คํ ๋ฆฌ ๊ตฌ์ฑ
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
# ์ปจํ
์คํธ๋ฅผ ํฌํจํ ์ต์ข
ํ๋กฌํํธ ๊ตฌ์ฑ
final_message = context_prompt + "\nํ์ฌ ์ง๋ฌธ: " + message
conversation.append({"role": "user", "content": final_message})
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=[255001],
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=500)
CSS = """
/* ์ ์ฒด ํ์ด์ง ์คํ์ผ๋ง */
body {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
min-height: 100vh;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* ๋ฉ์ธ ์ปจํ
์ด๋ */
.container {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
backdrop-filter: blur(10px);
transform: perspective(1000px) translateZ(0);
transition: all 0.3s ease;
}
/* ์ ๋ชฉ ์คํ์ผ๋ง */
h1 {
color: #2d3436;
font-size: 2.5rem;
text-align: center;
margin-bottom: 2rem;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
transform: perspective(1000px) translateZ(20px);
}
h3 {
text-align: center;
color: #2d3436;
font-size: 1.5rem;
margin: 1rem 0;
}
/* ์ฑํ
๋ฐ์ค ์คํ์ผ๋ง */
.chatbox {
background: white;
border-radius: 15px;
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
backdrop-filter: blur(4px);
border: 1px solid rgba(255, 255, 255, 0.18);
padding: 1rem;
margin: 1rem 0;
transform: translateZ(0);
transition: all 0.3s ease;
}
/* ๋ฉ์์ง ์คํ์ผ๋ง */
.chatbox .messages .message.user {
background: linear-gradient(145deg, #e1f5fe, #bbdefb);
border-radius: 15px;
padding: 1rem;
margin: 0.5rem;
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.05);
transform: translateZ(10px);
animation: messageIn 0.3s ease-out;
}
.chatbox .messages .message.bot {
background: linear-gradient(145deg, #f5f5f5, #eeeeee);
border-radius: 15px;
padding: 1rem;
margin: 0.5rem;
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.05);
transform: translateZ(10px);
animation: messageIn 0.3s ease-out;
}
/* ๋ฒํผ ์คํ์ผ๋ง */
.duplicate-button {
background: linear-gradient(145deg, #24292e, #1a1e22) !important;
color: white !important;
border-radius: 100vh !important;
padding: 0.8rem 1.5rem !important;
box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.2) !important;
transition: all 0.3s ease !important;
border: none !important;
cursor: pointer !important;
}
.duplicate-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.3) !important;
}
/* ์
๋ ฅ ํ๋ ์คํ์ผ๋ง */
"""
with gr.Blocks(css=CSS) as demo:
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
theme="soft",
additional_inputs_accordion=gr.Accordion(label="โ๏ธ ์ต์
์
", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="์จ๋",
render=False,
),
gr.Slider(
minimum=128,
maximum=8000,
step=1,
value=4000,
label="์ต๋ ํ ํฐ ์",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="์์ ํ๋ฅ ",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="์์ K",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="๋ฐ๋ณต ํจ๋ํฐ",
render=False,
),
],
examples=[
["์์ด์ ์ฌ๋ฆ๋ฐฉํ ๊ณผํ ํ๋ก์ ํธ๋ฅผ ์ํ 5๊ฐ์ง ์์ด๋์ด๋ฅผ ์ฃผ์ธ์."],
["๋งํฌ๋ค์ด์ ์ฌ์ฉํ์ฌ ๋ธ๋ ์ดํฌ์์ ๊ฒ์ ๋ง๋ค๊ธฐ ํํ ๋ฆฌ์ผ์ ์์ฑํด์ฃผ์ธ์."],
["์ด๋ฅ๋ ฅ์ ๊ฐ์ง ์ฃผ์ธ๊ณต์ SF ์ด์ผ๊ธฐ ์๋๋ฆฌ์ค๋ฅผ ์์ฑํด์ฃผ์ธ์. ๋ณต์ ์ค์ , ํ
๋ง์ ๋ก๊ทธ๋ผ์ธ์ ๋
ผ๋ฆฌ์ ์ผ๋ก ์ฌ์ฉํด์ฃผ์ธ์"],
["์์ด์ ์ฌ๋ฆ๋ฐฉํ ์์ ์ฐ๊ตฌ๋ฅผ ์ํ 5๊ฐ์ง ์์ด๋์ด์ ๊ทธ ๋ฐฉ๋ฒ์ ๊ฐ๋จํ ์๋ ค์ฃผ์ธ์."],
["ํผ์ฆ ๊ฒ์ ์คํฌ๋ฆฝํธ ์์ฑ์ ์ํ ์กฐ์ธ ๋ถํ๋๋ฆฝ๋๋ค"],
["๋งํฌ๋ค์ด ํ์์ผ๋ก ๋ธ๋ก ๊นจ๊ธฐ ๊ฒ์ ์ ์ ๊ต๊ณผ์๋ฅผ ์์ฑํด์ฃผ์ธ์"],
["์ค๋ฒ ๅทๆณ๋ฅผ ์๊ฐํด์ฃผ์ธ์"],
["์ผ๋ณธ์ด ๊ด์ฉ๊ตฌ, ์๋ด์ ๊ดํ ์ํ ๋ฌธ์ ๋ฅผ ๋ง๋ค์ด์ฃผ์ธ์"],
["๋๋ผ์๋ชฝ์ ๋ฑ์ฅ์ธ๋ฌผ์ ์๋ ค์ฃผ์ธ์"],
["์ค์ฝ๋
ธ๋ฏธ์ผํค ๋ง๋๋ ๋ฐฉ๋ฒ์ ์๋ ค์ฃผ์ธ์"],
["๋ฌธ์ 9.11๊ณผ 9.9 ์ค ์ด๋ ๊ฒ์ด ๋ ํฐ๊ฐ์? step by step์ผ๋ก ๋
ผ๋ฆฌ์ ์ผ๋ก ์๊ฐํด์ฃผ์ธ์."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |