File size: 498 Bytes
ce695ed
87c2046
ce695ed
87c2046
 
ce695ed
87c2046
 
 
 
ce695ed
87c2046
 
 
 
 
ce695ed
 
87c2046
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import gradio as gr
from transformers import pipeline

# Load pre-trained sentiment-analysis pipeline
classifier = pipeline("sentiment-analysis")

# Define the function for prediction
def analyze_sentiment(text):
    result = classifier(text)[0]
    return f"Label: {result['label']} (Score: {result['score']:.2f})"

# Create a Gradio interface
app = gr.Interface(
    fn=analyze_sentiment,
    inputs=gr.Textbox(label="Enter a sentence"),
    outputs=gr.Textbox(label="Sentiment")
)

app.launch()