Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 3,293 Bytes
			
			| 74d8604 b374ec8 74d8604 30d5bf6 74d8604 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | from typing import Optional, List
import time
import cohere
from settings import (
    COHERE_API_KEY, COHERE_API_URL, COHERE_MODEL_PRIMARY, COHERE_EMBED_MODEL,
    MODEL_SETTINGS, USE_OPEN_FALLBACKS, COHERE_TIMEOUT_S
)
try:
    from local_llm import LocalLLM
    _HAS_LOCAL = True
except Exception:
    _HAS_LOCAL = False
_client: Optional[cohere.Client] = None
def _co_client() -> Optional[cohere.Client]:
    global _client
    if _client is not None:
        return _client
    if not COHERE_API_KEY:
        return None
    kwargs = {"api_key": COHERE_API_KEY, "timeout": COHERE_TIMEOUT_S}
    if COHERE_API_URL:
        kwargs["base_url"] = COHERE_API_URL
    _client = cohere.Client(**kwargs)
    return _client
def _retry(fn, attempts=3, backoff=0.8):
    last = None
    for i in range(attempts):
        try:
            return fn()
        except Exception as e:
            last = e
            time.sleep(backoff * (2 ** i))
    raise last if last else RuntimeError("Unknown error")
def cohere_chat(prompt: str) -> Optional[str]:
    cli = _co_client(); 
    if not cli: return None
    def _call():
        resp = cli.chat(
            model=COHERE_MODEL_PRIMARY,
            message=prompt,
            temperature=MODEL_SETTINGS["temperature"],
            max_tokens=MODEL_SETTINGS["max_new_tokens"],
        )
        return getattr(resp, "text", None) or getattr(resp, "reply", None) \
            or (resp.generations[0].text if getattr(resp, "generations", None) else None)
    try:
        return _retry(_call, attempts=2)
    except Exception as e:
        from audit_log import log_event; log_event("cohere_chat_error", None, {"err": str(e)})
        return None
def open_fallback_chat(prompt: str) -> Optional[str]:
    if not USE_OPEN_FALLBACKS or not _HAS_LOCAL:
        return None
    try:
        return LocalLLM().chat(prompt)
    except Exception:
        return None
def cohere_embed(texts: List[str]) -> List[List[float]]:
    cli = _co_client()
    if not cli or not texts:
        return []
    def _call():
        resp = cli.embed(texts=texts, model=COHERE_EMBED_MODEL)
        return getattr(resp, "embeddings", None) or getattr(resp, "data", []) or []
    try:
        return _retry(_call, attempts=2)
    except Exception as e:
        from audit_log import log_event; log_event("cohere_embed_error", None, {"err": str(e)})
        return []
def generate_narrative(scenario_text: str, structured_sections_md: str, rag_snippets: List[str]) -> str:
    grounding = "\n\n".join([f"[RAG {i+1}]\n{t}" for i, t in enumerate(rag_snippets or [])])
    prompt = f"""You are a Canadian healthcare operations copilot.
Follow the scenario's requested deliverables exactly. Use the structured computations provided (already calculated deterministically) and the RAG snippets for grounding.
# Scenario
{scenario_text}
# Deterministic Results (already computed)
{structured_sections_md}
# Grounding (Canadian sources, snippets)
{grounding}
Write a concise, decision-ready report tailored to provincial operations leaders.
Do not invent numbers. If data are missing, say so clearly.
"""
    out = cohere_chat(prompt)
    if out: return out
    out = open_fallback_chat(prompt)
    if out: return out
    return "Unable to generate narrative at this time."
 | 
