File size: 11,606 Bytes
0af19e2
 
0b45526
0af19e2
 
 
0ed58ab
 
7bb94f0
0ed58ab
 
0af19e2
1db75d1
0b45526
0af19e2
0ed58ab
96a7b08
 
 
 
0af19e2
 
 
 
 
96a7b08
0af19e2
 
 
 
 
96a7b08
 
0b45526
2c1071a
 
0b45526
 
 
 
 
 
 
0af19e2
96a7b08
 
0b45526
0af19e2
96a7b08
 
 
0b45526
0af19e2
 
 
 
 
0b45526
0af19e2
96a7b08
 
 
 
 
f994e4e
0398bb7
96a7b08
 
 
f994e4e
96a7b08
0ed58ab
96a7b08
0af19e2
 
 
96a7b08
c473977
96a7b08
0af19e2
96a7b08
0af19e2
96a7b08
c473977
96a7b08
0af19e2
96a7b08
 
0af19e2
96a7b08
 
0af19e2
 
 
 
 
96a7b08
bdfed08
 
0af19e2
bdfed08
c473977
bdfed08
0af19e2
 
 
bdfed08
0af19e2
0b45526
0af19e2
96a7b08
 
 
0af19e2
 
96a7b08
54b0d06
 
bafd1c7
 
 
 
 
 
54b0d06
bafd1c7
 
54b0d06
bafd1c7
 
 
 
 
 
 
 
 
 
 
 
54b0d06
bafd1c7
 
 
54b0d06
 
 
bafd1c7
 
 
54b0d06
bafd1c7
 
 
54b0d06
bafd1c7
54b0d06
bafd1c7
 
b6673c1
bafd1c7
54b0d06
 
96a7b08
 
8848fec
5d14d8b
0af19e2
 
0ed58ab
 
3bcddcc
 
 
 
 
 
 
 
 
 
 
8848fec
3bcddcc
 
 
 
 
bafd1c7
3bcddcc
b03fd10
7e92123
0af19e2
 
b03fd10
3bcddcc
96a7b08
 
 
 
 
f994e4e
96a7b08
 
3bcddcc
 
96a7b08
3bcddcc
 
 
 
 
 
 
 
96a7b08
3bcddcc
 
 
 
 
 
 
 
 
 
 
671b6e3
3bcddcc
96a7b08
3bcddcc
 
 
 
b03fd10
3bcddcc
671b6e3
0af19e2
3bcddcc
b03fd10
3bcddcc
96a7b08
0af19e2
3bcddcc
 
96a7b08
 
 
 
 
f994e4e
3bcddcc
26428ec
96a7b08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime

preSetPrompt = "High fashion studio foto shoot. tall slender 18+ caucasian woman. gorgeous face. photorealistic. f1.4"
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"

lock = RLock()

HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

def get_current_time():
    now = datetime.now()
    now2 = now
    current_time = now2.strftime("%y-%m-%d %H:%M:%S")
    return current_time

def load_fn(models):
    global models_load
    models_load = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)

num_models = 12
max_images = 12
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32-1


def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]


def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)


async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg

    if seed == -1:
        theSeed = randomize_seed()
    else: 
        theSeed = seed
    kwargs["seed"] = theSeed
        
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"infer: Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {model_str}") from e
    except Exception as e:
        print(e)
        print(f"infer: exception: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception() from e
    if task.done() and result is not None and not isinstance(result, tuple):
        with lock:
            png_path =  model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
            image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
        return image
    return None

def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"gen_fn: Task aborted: {model_str}")
        result = None
        raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
    finally:
        loop.close()
    return result


def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    with lock:
        if image is not None: gallery.insert(0, (image, model_str))
    return gallery

js="""
<script>

/*
function simulateButtonPress_() {
    const button = document.getElementById('simulate-button');
    if (button) {
        button.click();  // Simulate the button press
        console.log('Button Pressed!');
    }
}
*/

function simulateButtonPress() {
    console.log('Button Pressed!');
}

// Function to observe image changes
function observeImageChanges() {
    // Select all images with the 'image-monitor' class
    const images = document.querySelectorAll('.image-monitor');
    
    // Create a MutationObserver to watch for changes in the image src
    const observer = new MutationObserver((mutationsList, observer) => {
        mutationsList.forEach(mutation => {
            if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
                // If the image src changes, simulate button press
                console.log('Image changed!');
                simulateButtonPress();
            }
        });
    });
    
    // Observer options: observe changes to attributes (like src)
    const config = { attributes: true };

    // Start observing each image
    images.forEach(image => {
        observer.observe(image, config);
    });
}

// Start observing
observeImageChanges();

console.log("Yo");
    
</script>
"""

with gr.Blocks(fill_width=True, head=js) as demo:
    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3)
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes="image-monitor",
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]

        with gr.Column(scale=2):
            gallery = gr.Gallery(label="Output", show_download_button=True,
                                interactive=False, show_share_button=False, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False)
            o.change(add_gallery, [o, m, gallery], [gallery])

        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)

    with gr.Tab('Single model'):
        with gr.Column(scale=2):
            model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
            with gr.Group():
                txt_input2 = gr.Textbox(label='Your prompt:', value = preSetPrompt, lines=3, autofocus=1)
                neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand2 = gr.Button("Randomize Seed", size="sm", variant="secondary")
                        seed_rand2.click(randomize_seed, None, [seed2], queue=False)
            num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
            with gr.Row():
                gen_button2 = gr.Button('Let the machine halucinate', variant='primary', scale=2)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output2 = [gr.Image(label='', show_download_button=True,
                               interactive=False, width=112, height=112, visible=True, format="png",
                               show_share_button=False, show_label=False) for _ in range(max_images)]

        with gr.Column(scale=2):
            gallery2 = gr.Gallery(label="Output", show_download_button=True,
                                interactive=False, show_share_button=True, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible=False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
            gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
                               fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
                               inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
                                       height2, width2, steps2, cfg2, seed2], outputs=[o],
                                       concurrency_limit=None, queue=False)
            o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])

demo.launch(show_api=False, max_threads=400)