File size: 6,948 Bytes
5112867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
from typing import Any
import matplotlib.pyplot as plt
import torch
from torch import nn
from itertools import repeat
from poetry_diacritizer.util.decorators import ignore_exception
from dataclasses import dataclass
import numpy as np
@dataclass
class ErrorRate:
wer: float
der: float
wer_without_case_ending: float
der_without_case_ending: float
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
@ignore_exception
def plot_alignment(alignment: torch.Tensor, path: str, global_step: Any = 0):
"""
Plot alignment and save it into a path
Args:
alignment (Tensor): the encoder-decoder alignment
path (str): a path used to save the alignment plot
global_step (int): used in the name of the output alignment plot
"""
alignment = alignment.squeeze(1).transpose(0, 1).cpu().detach().numpy()
fig, axs = plt.subplots()
img = axs.imshow(alignment, aspect="auto", origin="lower", interpolation="none")
fig.colorbar(img, ax=axs)
xlabel = "Decoder timestep"
plt.xlabel(xlabel)
plt.ylabel("Encoder timestep")
plt.tight_layout()
plot_name = f"{global_step}.png"
plt.savefig(os.path.join(path, plot_name), dpi=300, format="png")
plt.close()
def get_mask_from_lengths(memory, memory_lengths):
"""Get mask tensor from list of length
Args:
memory: (batch, max_time, dim)
memory_lengths: array like
"""
mask = memory.data.new(memory.size(0), memory.size(1)).bool().zero_()
for idx, length in enumerate(memory_lengths):
mask[idx][:length] = 1
return ~mask
def repeater(data_loader):
for loader in repeat(data_loader):
for data in loader:
yield data
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def initialize_weights(m):
if hasattr(m, "weight") and m.weight.dim() > 1:
nn.init.xavier_uniform_(m.weight.data)
def get_encoder_layers_attentions(model):
attentions = []
for layer in model.encoder.layers:
attentions.append(layer.self_attention.attention)
return attentions
def get_decoder_layers_attentions(model):
self_attns, src_attens = [], []
for layer in model.decoder.layers:
self_attns.append(layer.self_attention.attention)
src_attens.append(layer.encoder_attention.attention)
return self_attns, src_attens
def display_attention(
attention, path, global_step: int, name="att", n_heads=4, n_rows=2, n_cols=2
):
assert n_rows * n_cols == n_heads
fig = plt.figure(figsize=(15, 15))
for i in range(n_heads):
ax = fig.add_subplot(n_rows, n_cols, i + 1)
_attention = attention.squeeze(0)[i].transpose(0, 1).cpu().detach().numpy()
cax = ax.imshow(_attention, aspect="auto", origin="lower", interpolation="none")
plot_name = f"{global_step}-{name}.png"
plt.savefig(os.path.join(path, plot_name), dpi=300, format="png")
plt.close()
def plot_multi_head(model, path, global_step):
encoder_attentions = get_encoder_layers_attentions(model)
decoder_attentions, attentions = get_decoder_layers_attentions(model)
for i in range(len(attentions)):
display_attention(
attentions[0][0], path, global_step, f"encoder-decoder-layer{i + 1}"
)
for i in range(len(decoder_attentions)):
display_attention(
decoder_attentions[0][0], path, global_step, f"decoder-layer{i + 1}"
)
for i in range(len(encoder_attentions)):
display_attention(
encoder_attentions[0][0], path, global_step, f"encoder-layer {i + 1}"
)
def make_src_mask(src, pad_idx=0):
# src = [batch size, src len]
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
# src_mask = [batch size, 1, 1, src len]
return src_mask
def get_angles(pos, i, model_dim):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(model_dim))
return pos * angle_rates
def positional_encoding(position, model_dim):
angle_rads = get_angles(
np.arange(position)[:, np.newaxis],
np.arange(model_dim)[np.newaxis, :],
model_dim,
)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return torch.from_numpy(pos_encoding)
def calculate_error_rates(original_file_path: str, target_file_path: str) -> ErrorRate:
"""
Calculates ErrorRates from paths
"""
assert os.path.isfile(original_file_path)
assert os.path.isfile(target_file_path)
_wer = wer.calculate_wer_from_path(
inp_path=original_file_path, out_path=target_file_path, case_ending=True
)
_wer_without_case_ending = wer.calculate_wer_from_path(
inp_path=original_file_path, out_path=target_file_path, case_ending=False
)
_der = der.calculate_der_from_path(
inp_path=original_file_path, out_path=target_file_path, case_ending=True
)
_der_without_case_ending = der.calculate_der_from_path(
inp_path=original_file_path, out_path=target_file_path, case_ending=False
)
error_rates = ErrorRate(
_wer,
_der,
_wer_without_case_ending,
_der_without_case_ending,
)
return error_rates
def categorical_accuracy(preds, y, tag_pad_idx, device="cuda"):
"""
Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
"""
max_preds = preds.argmax(
dim=1, keepdim=True
) # get the index of the max probability
non_pad_elements = torch.nonzero((y != tag_pad_idx))
correct = max_preds[non_pad_elements].squeeze(1).eq(y[non_pad_elements])
return correct.sum() / torch.FloatTensor([y[non_pad_elements].shape[0]]).to(device)
def write_to_files(input_path, output_path, input_list, output_list):
with open(input_path, "w", encoding="utf8") as file:
for inp in input_list:
file.write(inp + "\n")
with open(output_path, "w", encoding="utf8") as file:
for out in output_list:
file.write(out + "\n")
def make_src_mask(src: torch.Tensor, pad_idx=0):
return (src != pad_idx).unsqueeze(1).unsqueeze(2)
def make_trg_mask(trg, trg_pad_idx=0):
# trg = [batch size, trg len]
trg_pad_mask = (trg != trg_pad_idx).unsqueeze(1).unsqueeze(2)
# trg_pad_mask = [batch size, 1, 1, trg len]
trg_len = trg.shape[1]
trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len))).bool()
# trg_sub_mask = [trg len, trg len]
trg_mask = trg_pad_mask & trg_sub_mask
# trg_mask = [batch size, 1, trg len, trg len]
return trg_mask
|