Spaces:
Runtime error
Runtime error
File size: 3,521 Bytes
b08cd8d fce9e44 b08cd8d 51a391e b08cd8d 4092a7e b08cd8d e4df0c6 b08cd8d b90f374 c971401 e9b8fb8 b08cd8d 655d954 b08cd8d 655d954 b08cd8d 4018831 fce9e44 b08cd8d 0934632 fce9e44 b08cd8d 655d954 b1371ca 655d954 b08cd8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import requests
from bs4 import BeautifulSoup
import time
import json
from lxml import etree
# Move models to CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large", model_max_length= 1024)
model = AutoModelForCausalLM.from_pretrained("microsoft/BioGPT-Large").to(device)
api_key = '2c78468d6246082d456a140bb1de415ed108'
num_results = 10
def extract_longer_answers_from_paragraphs(paragraphs, query, tokenizer, model):
context = " ".join(paragraphs)
question = f"What is the mechanism of {query}?"
context += question
inputs = tokenizer(context, return_tensors="pt", add_special_tokens=False).to(device)
top_p = 0.9 # Adjust as needed
outputs = model.generate(
**inputs,
top_p=top_p,
num_beams=1,
do_sample= True,
no_repeat_ngram_size=2,
max_new_tokens= 1516,
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def retrieve_and_answer(query1, query2):
combined_query = f"({query1}) AND ({query2})"
answer = fetch_and_generate(query1, combined_query, tokenizer, model)
return answer
def fetch_and_generate(query, combined_query, tokenizer, model):
esearch_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&api_key={api_key}&term={combined_query}&retmax={num_results}&sort=relevance"
headers = {'Accept': 'application/json'}
response = requests.get(esearch_url, headers=headers)
parser = etree.XMLParser(recover=True)
root = etree.fromstring(response.text.encode('utf-8'), parser=parser)
if response.status_code == 200:
paragraphs = []
for article_id in root.find('IdList'):
article_id = article_id.text
efetch_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&api_key={api_key}&id={article_id}&retmode=xml"
response = requests.get(efetch_url)
if response.status_code == 200:
article_data = response.text
soup = BeautifulSoup(article_data, 'xml')
articles = soup.find_all('PubmedArticle')
for article in articles:
title = article.find('ArticleTitle')
if title:
title_text = title.text
if article.find('AbstractText'):
paragraphs.append(article.find('AbstractText').text)
else:
print("Error:", response.status_code)
time.sleep(3)
answer = extract_longer_answers_from_paragraphs(paragraphs, query, tokenizer, model)
return answer
else:
print("Error:", response.status_code)
return "Error fetching articles.", []
# Gradio Interface
iface = gr.Interface(
fn=retrieve_and_answer,
inputs=[gr.Textbox(placeholder="Enter Query 1", label= 'query1'),
gr.Textbox(placeholder="Enter Query 2", label= 'query2')],
outputs=[gr.Textbox(placeholder="Answer from BioGPT"),],
live=False,
title="PubMed Question Answering: Microsoft/BioGPT",
description="Enter two queries to retrieve PubMed articles.",
examples=[
["sertraline", "mechanism"],
["cancer", "treatment"]
]
)
iface.launch()
|