File size: 7,459 Bytes
8b1f63b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# FastAPI app for HF Spaces: 3 sentiment models + tiny test UI
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from typing import List, Dict, Any

try:
    import torch
    DEVICE = 0 if torch.cuda.is_available() else -1
except Exception:
    DEVICE = -1

from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline

# ---- Models ----
FABSA_ID   = "Anudeep-Narala/fabsa-roberta-sentiment"            # 3-class
TWITTER_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"  # 3-class
MOOD_ID    = "Priyanshuchaudhary2425/MoodMeter-sentimental-analysis"  # 2-class (pos/neg)

def load_pipe(model_id: str) -> TextClassificationPipeline:
    tok = AutoTokenizer.from_pretrained(model_id)
    mdl = AutoModelForSequenceClassification.from_pretrained(model_id)
    return TextClassificationPipeline(
        model=mdl, tokenizer=tok, device=DEVICE,
        return_all_scores=True, truncation=True
    )

print("Loading models…")
fabsa   = load_pipe(FABSA_ID)
twitter = load_pipe(TWITTER_ID)
mood    = load_pipe(MOOD_ID)
print("Models ready.")

def norm3(scores: List[Dict[str, Any]]):
    """Map list[{label,score}] -> (pred, scores3, top, margin)."""
    out = {"negative": 0.0, "neutral": 0.0, "positive": 0.0}
    for e in scores:
        lbl = e["label"].lower()
        s = float(e["score"])
        if "neg" in lbl or lbl == "label_0": out["negative"] = s
        elif "neu" in lbl or lbl == "label_1": out["neutral"]  = s
        elif "pos" in lbl or lbl == "label_2": out["positive"] = s
    pred = max(out, key=out.get)
    vals = sorted(out.values(), reverse=True)
    top, margin = float(out[pred]), float(vals[0]-vals[1])
    return pred, out, top, margin

def norm2(scores: List[Dict[str, Any]]):
    """Embed 2-class model into 3-class dict (neutral=0)."""
    d = {"negative": 0.0, "positive": 0.0}
    for e in scores:
        lbl = e["label"].lower()
        s = float(e["score"])
        if "neg" in lbl or lbl == "label_0": d["negative"] = s
        elif "pos" in lbl or lbl == "label_1": d["positive"] = s
    pred = "negative" if d["negative"] >= d["positive"] else "positive"
    top = float(max(d.values()))
    margin = float(abs(d["negative"] - d["positive"]))
    out3 = {"negative": d["negative"], "neutral": 0.0, "positive": d["positive"]}
    return pred, out3, top, margin

def fuse(fabsa_label: str, twitter_label: str) -> str:
    # Ensemble rule you asked for:
    # FABSA=neg -> neg; else if Twitter=neu -> neu; else Twitter
    if fabsa_label == "negative": return "negative"
    if twitter_label == "neutral": return "neutral"
    return twitter_label

app = FastAPI(title="HF Space — Sentiment Inference (FABSA + MoodMeter + Twitter)")

class PredictIn(BaseModel):
    text: str

class BatchIn(BaseModel):
    texts: List[str]

@app.get("/health")
def health():
    return {"ok": True, "device": DEVICE}

@app.post("/predict")
def predict(inp: PredictIn):
    t = (inp.text or "").strip()
    f_raw = fabsa(t)[0]
    t_raw = twitter(t)[0]
    m_raw = mood(t)[0]

    f_pred, f_scores, f_top, f_margin = norm3(f_raw)
    t_pred, t_scores, t_top, t_margin = norm3(t_raw)
    m_pred, m_scores, m_top, m_margin = norm2(m_raw)

    return {
        "text": t,
        "fabsa":   {"label": f_pred, "scores": f_scores, "top": f_top, "margin": f_margin},
        "twitter": {"label": t_pred, "scores": t_scores, "top": t_top, "margin": t_margin},
        "mood":    {"label": m_pred, "scores": m_scores, "top": m_top, "margin": m_margin},
        "ensemble": {"label": fuse(f_pred, t_pred)}
    }

@app.post("/batch")
def batch(inp: BatchIn):
    texts = [(x or "").strip() for x in inp.texts]
    f_raw = fabsa(texts, batch_size=16)
    t_raw = twitter(texts, batch_size=16)
    m_raw = mood(texts, batch_size=16)

    out = []
    for i, t in enumerate(texts):
        f_pred, f_scores, f_top, f_margin = norm3(f_raw[i])
        t_pred, t_scores, t_top, t_margin = norm3(t_raw[i])
        m_pred, m_scores, m_top, m_margin = norm2(m_raw[i])
        out.append({
            "text": t,
            "fabsa":   {"label": f_pred, "scores": f_scores, "top": f_top, "margin": f_margin},
            "twitter": {"label": t_pred, "scores": t_scores, "top": t_top, "margin": t_margin},
            "mood":    {"label": m_pred, "scores": m_scores, "top": m_top, "margin": m_margin},
            "ensemble": {"label": fuse(f_pred, t_pred)}
        })
    return {"items": out}

# --- Super-simple test page (no backend needed) ---
INDEX_HTML = """<!doctype html>
<html lang="en"><head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width,initial-scale=1"/>
<title>Sentiment Space — Quick Test</title>
<style>
  body{font-family: system-ui, Arial, sans-serif; background:#0b0b0b; color:#eee; padding:24px; max-width:900px; margin:0 auto;}
  .card{border:1px solid #333; border-radius:12px; padding:16px; background:#111; margin-top:16px;}
  textarea{width:100%; background:#0e0e0e; color:#eee; border:1px solid #333; border-radius:8px; padding:12px;}
  button{background:#4F46E5; color:#fff; border:none; padding:10px 14px; border-radius:8px; cursor:pointer;}
  pre{background:#0e0e0e; padding:12px; border-radius:8px; overflow:auto;}
  .row{display:grid; grid-template-columns: 1fr 1fr; gap:16px;}
</style>
</head><body>
  <h1>Sentiment Model Space — Quick Test</h1>
  <div class="card">
    <textarea id="txt" rows="5" placeholder="Type something like: I feel exhausted and nothing seems to help."></textarea>
    <div style="margin-top:12px; display:flex; gap:12px;">
      <button onclick="run()">Predict</button>
      <button onclick="demo()">Demo Text</button>
    </div>
    <div id="status" style="opacity:.7; margin-top:8px;"></div>
  </div>

  <div class="row">
    <div class="card"><h3>FABSA</h3><pre id="fabsa"></pre></div>
    <div class="card"><h3>Twitter-RoBERTa</h3><pre id="twitter"></pre></div>
  </div>
  <div class="row">
    <div class="card"><h3>MoodMeter (2-class)</h3><pre id="mood"></pre></div>
    <div class="card"><h3>Ensemble</h3><pre id="ens"></pre></div>
  </div>

<script>
async function run(){
  const s = document.getElementById('txt').value.trim();
  if(!s){ alert('Enter some text'); return; }
  set('#status','Predicting...')
  try{
    const r = await fetch('/predict', {
      method:'POST', headers:{'Content-Type':'application/json'},
      body: JSON.stringify({text:s})
    });
    const j = await r.json();
    set('#fabsa', fmt(j.fabsa));
    set('#twitter', fmt(j.twitter));
    set('#mood', fmt(j.mood));
    set('#ens', JSON.stringify(j.ensemble, null, 2));
    set('#status','Done.')
  }catch(e){
    set('#status','Error: '+e.message)
  }
}
function set(sel, val){ document.querySelector(sel).textContent = typeof val==='string'? val : JSON.stringify(val,null,2); }
function fmt(x){
  if(!x) return '';
  const s = x.scores||{};
  return JSON.stringify({
    label: x.label,
    neg: round(s.negative), neu: round(s.neutral), pos: round(s.positive),
    top: round(x.top), margin: round(x.margin)
  }, null, 2);
}
function round(v){ return (v==null? null : Math.round(v*1000)/1000); }
function demo(){
  document.getElementById('txt').value = "It’s 3 a.m. again. I’m staring at the ceiling replaying everything I might fail tomorrow.";
}
</script>
</body></html>
"""

@app.get("/", response_class=HTMLResponse)
def index():
    return HTMLResponse(INDEX_HTML)