Spaces:
Running
Running
File size: 8,168 Bytes
6c343a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import torch
from collections import Counter
from os import path as osp
from torch import distributed as dist
from tqdm import tqdm
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.dist_util import get_dist_info
from basicsr.utils.registry import MODEL_REGISTRY
from .video_base_model import VideoBaseModel
@MODEL_REGISTRY.register()
class VideoRecurrentModel(VideoBaseModel):
def __init__(self, opt):
super(VideoRecurrentModel, self).__init__(opt)
if self.is_train:
self.fix_flow_iter = opt['train'].get('fix_flow')
def setup_optimizers(self):
train_opt = self.opt['train']
flow_lr_mul = train_opt.get('flow_lr_mul', 1)
logger = get_root_logger()
logger.info(f'Multiple the learning rate for flow network with {flow_lr_mul}.')
if flow_lr_mul == 1:
optim_params = self.net_g.parameters()
else: # separate flow params and normal params for different lr
normal_params = []
flow_params = []
for name, param in self.net_g.named_parameters():
if 'spynet' in name:
flow_params.append(param)
else:
normal_params.append(param)
optim_params = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
},
{
'params': flow_params,
'lr': train_opt['optim_g']['lr'] * flow_lr_mul
},
]
optim_type = train_opt['optim_g'].pop('type')
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
self.optimizers.append(self.optimizer_g)
def optimize_parameters(self, current_iter):
if self.fix_flow_iter:
logger = get_root_logger()
if current_iter == 1:
logger.info(f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.')
for name, param in self.net_g.named_parameters():
if 'spynet' in name or 'edvr' in name:
param.requires_grad_(False)
elif current_iter == self.fix_flow_iter:
logger.warning('Train all the parameters.')
self.net_g.requires_grad_(True)
super(VideoRecurrentModel, self).optimize_parameters(current_iter)
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
dataset = dataloader.dataset
dataset_name = dataset.opt['name']
with_metrics = self.opt['val']['metrics'] is not None
# initialize self.metric_results
# It is a dict: {
# 'folder1': tensor (num_frame x len(metrics)),
# 'folder2': tensor (num_frame x len(metrics))
# }
if with_metrics:
if not hasattr(self, 'metric_results'): # only execute in the first run
self.metric_results = {}
num_frame_each_folder = Counter(dataset.data_info['folder'])
for folder, num_frame in num_frame_each_folder.items():
self.metric_results[folder] = torch.zeros(
num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda')
# initialize the best metric results
self._initialize_best_metric_results(dataset_name)
# zero self.metric_results
rank, world_size = get_dist_info()
if with_metrics:
for _, tensor in self.metric_results.items():
tensor.zero_()
metric_data = dict()
num_folders = len(dataset)
num_pad = (world_size - (num_folders % world_size)) % world_size
if rank == 0:
pbar = tqdm(total=len(dataset), unit='folder')
# Will evaluate (num_folders + num_pad) times, but only the first num_folders results will be recorded.
# (To avoid wait-dead)
for i in range(rank, num_folders + num_pad, world_size):
idx = min(i, num_folders - 1)
val_data = dataset[idx]
folder = val_data['folder']
# compute outputs
val_data['lq'].unsqueeze_(0)
val_data['gt'].unsqueeze_(0)
self.feed_data(val_data)
val_data['lq'].squeeze_(0)
val_data['gt'].squeeze_(0)
self.test()
visuals = self.get_current_visuals()
# tentative for out of GPU memory
del self.lq
del self.output
if 'gt' in visuals:
del self.gt
torch.cuda.empty_cache()
if self.center_frame_only:
visuals['result'] = visuals['result'].unsqueeze(1)
if 'gt' in visuals:
visuals['gt'] = visuals['gt'].unsqueeze(1)
# evaluate
if i < num_folders:
for idx in range(visuals['result'].size(1)):
result = visuals['result'][0, idx, :, :, :]
result_img = tensor2img([result]) # uint8, bgr
metric_data['img'] = result_img
if 'gt' in visuals:
gt = visuals['gt'][0, idx, :, :, :]
gt_img = tensor2img([gt]) # uint8, bgr
metric_data['img2'] = gt_img
if save_img:
if self.opt['is_train']:
raise NotImplementedError('saving image is not supported during training.')
else:
if self.center_frame_only: # vimeo-90k
clip_ = val_data['lq_path'].split('/')[-3]
seq_ = val_data['lq_path'].split('/')[-2]
name_ = f'{clip_}_{seq_}'
img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
f"{name_}_{self.opt['name']}.png")
else: # others
img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
f"{idx:08d}_{self.opt['name']}.png")
# image name only for REDS dataset
imwrite(result_img, img_path)
# calculate metrics
if with_metrics:
for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()):
result = calculate_metric(metric_data, opt_)
self.metric_results[folder][idx, metric_idx] += result
# progress bar
if rank == 0:
for _ in range(world_size):
pbar.update(1)
pbar.set_description(f'Folder: {folder}')
if rank == 0:
pbar.close()
if with_metrics:
if self.opt['dist']:
# collect data among GPUs
for _, tensor in self.metric_results.items():
dist.reduce(tensor, 0)
dist.barrier()
if rank == 0:
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def test(self):
n = self.lq.size(1)
self.net_g.eval()
flip_seq = self.opt['val'].get('flip_seq', False)
self.center_frame_only = self.opt['val'].get('center_frame_only', False)
if flip_seq:
self.lq = torch.cat([self.lq, self.lq.flip(1)], dim=1)
with torch.no_grad():
self.output = self.net_g(self.lq)
if flip_seq:
output_1 = self.output[:, :n, :, :, :]
output_2 = self.output[:, n:, :, :, :].flip(1)
self.output = 0.5 * (output_1 + output_2)
if self.center_frame_only:
self.output = self.output[:, n // 2, :, :, :]
self.net_g.train()
|