Spaces:
Sleeping
Sleeping
File size: 1,716 Bytes
5e7dc6f 47ca0aa 5e7dc6f 4725d98 5e7dc6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
# make function using import pip to install torch
import pip
pip.main(['install', 'torch'])
pip.main(['install', 'transformers'])
import torch
import transformers
# saved_model
def load_model(model_path):
saved_data = torch.load(
model_path,
map_location="cpu"
)
bart_best = saved_data["model"]
train_config = saved_data["config"]
tokenizer = transformers.PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v1')
## Load weights.
model = transformers.BartForConditionalGeneration.from_pretrained('gogamza/kobart-base-v1')
model.load_state_dict(bart_best)
return model, tokenizer
# main
def inference(prompt):
model_path = "./kobart-model-poem.pth"
model, tokenizer = load_model(
model_path=model_path
)
input_ids = tokenizer.encode(prompt)
input_ids = torch.tensor(input_ids)
input_ids = input_ids.unsqueeze(0)
output = model.generate(input_ids)
output = tokenizer.decode(output[0], skip_special_tokens=True)
return output
demo = gr.Interface(
fn=inference,
inputs="text",
outputs="text", #return κ°
examples=[
"μμ μ¨μ νλ κΈΈκ°μ λ¨μ΄μ‘μ΄μ\nμλΌμ μλΌμ λͺ¨λλ€ λ°μΌλκΉμ\nμμ μ¨μ νλ λλ°μ λ¨μ΄μ‘μ΄μ\nμ«μ΄μ μ«μ΄μ ν¬κ² μλ μ μμ΄μ\nμμ μ¨μ νλ κ°μλ°μ λ¨μ΄μ‘μ΄μ\nμ μΌμΌ, μνμ μ¨μ μ΄ μκ° μμ΄μ\nμμ μ¨μ νλ μ’μ λ°μ λ¨μ΄μ‘μ΄μ\nμ’μμ μ’μμ μ μλΌμ μ’μ λ무 λκ² μ΄μ"
]
).launch() # launch(share=True)λ₯Ό μ€μ νλ©΄ μΈλΆμμ μ μ κ°λ₯ν λ§ν¬κ° μμ±λ¨
demo.launch() |