Spaces:
Runtime error
Runtime error
File size: 15,769 Bytes
77df4ca a5a59c1 77df4ca acb6133 6598fac 77df4ca e2d11b6 77df4ca e2d11b6 77df4ca e2d11b6 77df4ca e2d11b6 77df4ca e2d11b6 77df4ca e2d11b6 a5a59c1 77df4ca 6598fac a5a59c1 6598fac 77df4ca acb6133 a5a59c1 e2d11b6 77df4ca a5a59c1 77df4ca a5a59c1 77df4ca 6598fac 77df4ca 6598fac 77df4ca 68f056c 77df4ca 8a0e7e1 77df4ca 6598fac 77df4ca 6598fac 77df4ca acb6133 f9931dd 6598fac acb6133 77df4ca acb6133 8a0e7e1 77df4ca 8a0e7e1 acb6133 77df4ca acb6133 77df4ca acb6133 77df4ca acb6133 77df4ca acb6133 77df4ca acb6133 8a0e7e1 77df4ca acb6133 77df4ca acb6133 77df4ca acb6133 8a0e7e1 77df4ca acb6133 77df4ca acb6133 a5a59c1 acb6133 77df4ca acb6133 77df4ca acb6133 77df4ca a5a59c1 77df4ca 6598fac a5a59c1 de92875 77df4ca 5ea4cc2 e2d11b6 5ea4cc2 6598fac 68f056c 6598fac 8a0e7e1 68f056c 6598fac 68f056c 6598fac 77df4ca acb6133 77df4ca 6598fac de92875 77df4ca 2400e88 77df4ca f9931dd 77df4ca 6598fac 77df4ca f9931dd 6598fac c77ccb5 6598fac acb6133 6598fac c77ccb5 6598fac acb6133 6598fac f9931dd acb6133 77df4ca 6598fac c77ccb5 77df4ca 6598fac c77ccb5 6598fac 77df4ca acb6133 77df4ca 6598fac 77df4ca f9931dd a5a59c1 acb6133 f9931dd acb6133 a5a59c1 77df4ca a5a59c1 acb6133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import time
import io
import gradio as gr
import cv2
import base64
import openai
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import StrOutputParser
from PIL import Image
from prompts import VISION_SYSTEM_PROMPT, AUDIO_SYSTEM_PROMPT, USER_PROMPT_TEMPLATE, FINAL_EVALUATION_PROMPT
global_dict = {}
######
# SETTINGS
VIDEO_FRAME_LIMIT = 2000
######
def validate_api_key(api_key):
client = openai.OpenAI(api_key=api_key)
try:
# Make your OpenAI API request here
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "user", "content": "Hello world"},
]
)
except openai.RateLimitError as e:
# Handle rate limit error (we recommend using exponential backoff)
print(f"OpenAI API request exceeded rate limit: {e}")
response = None
error = e
pass
except openai.APIConnectionError as e:
# Handle connection error here
print(f"Failed to connect to OpenAI API: {e}")
response = None
error = e
pass
except openai.APIError as e:
# Handle API error here, e.g. retry or log
print(f"OpenAI API returned an API Error: {e}")
response = None
error = e
pass
if response:
return True
else:
raise gr.Error(f"OpenAI returned an API Error: {error}")
def _process_video(video_file):
# Read and process the video file
video = cv2.VideoCapture(video_file.name)
if 'video_file' not in global_dict:
global_dict.setdefault('video_file', video_file.name)
else:
global_dict['video_file'] = video_file.name
base64Frames = []
while video.isOpened():
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
video.release()
if len(base64Frames) > VIDEO_FRAME_LIMIT:
raise gr.Warning(f"Video's play time is too long. (>1m)")
print(len(base64Frames), "frames read.")
if not base64Frames:
raise gr.Error(f"Cannot open the video.")
return base64Frames
def _make_video_batch(video_file, batch_size, total_batch_percent):
frames = _process_video(video_file)
TOTAL_FRAME_COUNT = len(frames)
BATCH_SIZE = int(batch_size)
TOTAL_BATCH_SIZE = int(TOTAL_FRAME_COUNT * total_batch_percent / 100)
BATCH_STEP = int(TOTAL_FRAME_COUNT / TOTAL_BATCH_SIZE)
base64FramesBatch = []
for idx in range(0, TOTAL_FRAME_COUNT, BATCH_STEP * BATCH_SIZE):
# print(f'## {idx}')
temp = []
for i in range(BATCH_SIZE):
# print(f'# {idx + BATCH_STEP * i}')
if (idx + BATCH_STEP * i) < TOTAL_FRAME_COUNT:
temp.append(frames[idx + BATCH_STEP * i])
else:
continue
base64FramesBatch.append(temp)
for idx, batch in enumerate(base64FramesBatch):
# assert len(batch) <= BATCH_SIZE
print(f'##{idx} - batch_size: {len(batch)}')
if 'batched_frames' not in global_dict:
global_dict.setdefault('batched_frames', base64FramesBatch)
else:
global_dict['batched_frames'] = base64FramesBatch
return base64FramesBatch
def show_batches(video_file, batch_size, total_batch_percent):
batched_frames = _make_video_batch(video_file, batch_size, total_batch_percent)
images = []
for i, l in enumerate(batched_frames):
print(f"#### Batch_{i+1}")
for j, img in enumerate(l):
print(f'## Image_{j+1}')
image_bytes = base64.b64decode(img.encode("utf-8"))
# Convert the bytes to a stream (file-like object)
image_stream = io.BytesIO(image_bytes)
# Open the image as a PIL image
image = Image.open(image_stream)
images.append((image, f"batch {i+1}"))
print("-"*100)
return images
def show_audio_transcript(video_file, api_key):
previous_video_file = global_dict.get('video_file')
if global_dict.get('transcript') and previous_video_file == video_file.name:
return global_dict['transcript']
else:
audio_file = open(video_file.name, "rb")
client = openai.OpenAI(api_key=api_key)
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
if 'transcript' not in global_dict:
global_dict.setdefault('transcript', transcript)
else:
global_dict['transcript'] = transcript
return transcript
def change_audio_rubric(choice):
print(choice)
if choice == "Video only":
return gr.Textbox(
visible=False
)
else:
return gr.Textbox(
label="3. Audio Evaluation Rubric (if needed)",
info="Enter your evaluation rubric here...",
placeholder="<RUBRIC>\nHere's what the performer should *SAY* as follows:\n1. From standing, you need to shout 'Start' signal.\n2. Rock forward, you shouldn't make any noise while rolling.\n3. Standing still again, you need to shout 'Finish' signal.",
lines=7,
interactive=True,
visible=True)
def change_audio_eval(choice):
print(choice)
if choice == "Video only":
return gr.Textbox(
visible=False,
)
else:
return gr.Textbox(
label="Audio Script Eval...",
lines=10,
interactive=False,
visible=True
)
def call_gpt_vision(api_key, rubrics, progress=gr.Progress()) -> list:
frames = global_dict.get('batched_frames')
openai.api_key = api_key
full_result_vision = []
full_text_vision = ""
idx = 0
for batch in progress.tqdm(frames):
VISION_PROMPT_MESSAGES = [
{
"role": "system",
"content": VISION_SYSTEM_PROMPT,
},
{
"role": "user",
"content": [
PromptTemplate.from_template(USER_PROMPT_TEMPLATE).format(rubrics=rubrics),
*map(lambda x: {"image": x, "resize": 300}, batch),
],
},
]
params = {
"model": "gpt-4-vision-preview",
"messages": VISION_PROMPT_MESSAGES,
"max_tokens": 1024,
}
try:
result = openai.chat.completions.create(**params)
print(result.choices[0].message.content)
full_result_vision.append(result)
except Exception as e:
print(f"Error: {e}")
full_text_vision += f'### BATCH_{idx+1}\n' + "-"*50 + "\n" + f"Error: {e}" + "\n" + "-"*50 + "\n"
idx += 1
pass
if 'full_result_vision' not in global_dict:
global_dict.setdefault('full_result_vision', full_result_vision)
else:
global_dict['full_result_vision'] = full_result_vision
print(f'### BATCH_{idx+1}')
print('-'*100)
full_text_vision += f'### BATCH_{idx+1}\n' + "-"*50 + "\n" + result.choices[0].message.content + "\n" + "-"*50 + "\n"
idx += 1
time.sleep(2)
return full_text_vision
def call_gpt_audio(api_key, rubrics) -> str:
transcript = global_dict.get('transcript')
openai.api_key = api_key
full_text_audio = ""
PROMPT_MESSAGES = [
{
"role": "system",
"content": AUDIO_SYSTEM_PROMPT,
},
{
"role": "user",
"content": PromptTemplate.from_template(USER_PROMPT_TEMPLATE).format(rubrics=rubrics) + "\n\n<TEXT>\n" + transcript
},
]
params = {
"model": "gpt-4",
"messages": PROMPT_MESSAGES,
"max_tokens": 1024,
}
try:
result = openai.chat.completions.create(**params)
full_text_audio = result.choices[0].message.content
print(full_text_audio)
except openai.OpenAIError as e:
print(f"Failed to connect to OpenAI: {e}")
pass
if 'full_text_audio' not in global_dict:
global_dict.setdefault('full_text_audio', full_text_audio)
else:
global_dict['full_text_audio'] = full_text_audio
return full_text_audio
def get_full_result():
full_result_vision = global_dict.get('full_result_vision')
full_result_audio = global_dict.get('full_text_audio')
result_text_video = ""
result_text_audio = ""
for idx, res in enumerate(full_result_vision):
result_text_video += f'<Video Evaluation_{idx+1}>\n'
result_text_video += res.choices[0].message.content
result_text_video += "\n"
result_text_video += "-"*5
result_text_video += "\n"
result_text_video += "*"*5 + "END of Video" + "*"*5
if full_result_audio:
result_text_audio += '<Audio Evaluation>\n'
result_text_audio += full_result_audio
result_text_audio += "\n"
result_text_audio += "-"*5
result_text_audio += "\n"
result_text_audio += "*"*5 + "END of Audio" + "*"*5
result_text = result_text_video + "\n\n" + result_text_audio
else:
result_text = result_text_video
global_dict.setdefault('result_text', result_text)
return result_text
def get_final_anser(api_key, result_text):
chain = ChatOpenAI(
api_key=api_key,
model="gpt-4",
max_tokens=1024,
temperature=0,
)
prompt = PromptTemplate.from_template(FINAL_EVALUATION_PROMPT)
runnable = prompt | chain | StrOutputParser()
final_eval = runnable.invoke({"evals": result_text})
return final_eval
# Define the Gradio app
def main():
with gr.Blocks() as demo:
gr.Markdown("# GPT-4 Vision for Evaluation")
gr.Markdown("## 1st STEP. Make Batched Snapshots & Audio Script")
with gr.Row():
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="Enter your OpenAI API Key",
info="Your API Key must be allowed to use GPT-4 Vision",
placeholder="sk-*********...",
lines=1
)
video_upload = gr.File(
label="Upload your video (under 1 minute video is the best..!)",
file_types=["video"],
)
batch_size = gr.Slider(
label="Number of images in one batch",
info="Choose between 2 and 5",
value=5,
minimum=2,
maximum=5,
step=1
)
total_batch_percent = gr.Slider(
label="Percentage(%) of batched image frames to total frames",
info="Choose between 1(%) and 5(%)",
value=3,
minimum=1,
maximum=5,
step=1
)
process_button = gr.Button("Process")
with gr.Column(scale=1):
gallery = gr.Gallery(
label="Batched Snapshots of Video",
columns=[5],
rows=[2],
object_fit="contain",
height="auto",
)
transcript_box = gr.Textbox(
label="Audio Transcript",
lines=8,
interactive=False
)
gr.Markdown("## 2nd STEP. Set Evaluation Rubric")
with gr.Row():
with gr.Column(scale=1):
multimodal_radio = gr.Radio(
label="1. Multimodal Selection",
info="Choose evaluation channel",
value="Video + Audio",
choices=["Video + Audio", "Video only"]
)
rubric_video_input = gr.Textbox(
label="Video Evaluation Rubric",
info="Enter your evaluation rubric here...",
placeholder="Here's what the performer should *SHOW* as follows:\n1. From standing, bend your knees and straighten your arms in front of you.\n2. Place your hands on the floor, shoulder width apart with fingers pointing forward and your chin on your chest.\n3. Rock forward, straighten legs and transfer body weight onto shoulders.\n4. Rock forward on a rounded back placing both feet on the floor.\n5. Stand using arms for balance, without hands touching the floor.",
lines=7
)
rubric_audio_input = gr.Textbox(
label="Audio Evaluation Rubric (if needed)",
info="Enter your evaluation rubric here...",
placeholder="Here's what the performer should *SAY* as follows:\n1. From standing, you need to shout 'Start' signal.\n2. Rock forward, you shouldn't make any noise while rolling.\n3. Standing still again, you need to shout 'Finish' signal.",
interactive=True,
visible=True,
lines=7
)
evaluate_button = gr.Button("Evaluate")
with gr.Column(scale=1):
video_output_box = gr.Textbox(
label="Video Batched Snapshots Eval...",
lines=8,
interactive=False
)
audio_output_box = gr.Textbox(
label="Audio Script Eval...",
lines=8,
interactive=False,
visible=True
)
gr.Markdown("## 3rd STEP. Summarize and Get Result")
with gr.Row():
with gr.Column(scale=1):
output_box_fin = gr.Textbox(
label="FULL Response",
info="You can edit partial evaluation in here...",
lines=10,
interactive=True,
show_copy_button=True,
)
summarize_button = gr.Button("Summarize")
with gr.Column(scale=1):
output_box_fin_fin = gr.Textbox(label="Final Evaluation", lines=10, interactive=True)
multimodal_radio.change(fn=change_audio_rubric, inputs=multimodal_radio, outputs=rubric_audio_input)
multimodal_radio.change(fn=change_audio_eval, inputs=multimodal_radio, outputs=audio_output_box)
process_button.click(fn=validate_api_key, inputs=api_key_input, outputs=None).success(fn=show_batches, inputs=[video_upload, batch_size, total_batch_percent], outputs=gallery).success(fn=show_audio_transcript, inputs=[video_upload, api_key_input], outputs=transcript_box)
if multimodal_radio.value == "Video + Audio":
evaluate_button.click(fn=call_gpt_vision, inputs=[api_key_input, rubric_video_input], outputs=video_output_box).then(fn=call_gpt_audio, inputs=[api_key_input, rubric_audio_input], outputs=audio_output_box).then(get_full_result, None, output_box_fin)
else:
evaluate_button.click(fn=call_gpt_vision, inputs=[api_key_input, rubric_video_input], outputs=video_output_box).then(get_full_result, None, output_box_fin)
summarize_button.click(fn=get_final_anser, inputs=[api_key_input, output_box_fin], outputs=output_box_fin_fin)
demo.launch()
if __name__ == "__main__":
main()
|