Spaces:
Build error
Build error
File size: 20,680 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import logging
import os
from collections.abc import Callable, Generator, Iterable, Sequence
from typing import IO, Any, Optional, Union, cast
from core.entities.embedding_type import EmbeddingInputType
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import ModelLoadBalancingConfiguration
from core.errors.error import ProviderTokenNotInitError
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.provider_manager import ProviderManager
from extensions.ext_redis import redis_client
from models.provider import ProviderType
logger = logging.getLogger(__name__)
class ModelInstance:
"""
Model instance class
"""
def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
self.provider_model_bundle = provider_model_bundle
self.model = model
self.provider = provider_model_bundle.configuration.provider.provider
self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
self.model_type_instance = self.provider_model_bundle.model_type_instance
self.load_balancing_manager = self._get_load_balancing_manager(
configuration=provider_model_bundle.configuration,
model_type=provider_model_bundle.model_type_instance.model_type,
model=model,
credentials=self.credentials,
)
@staticmethod
def _fetch_credentials_from_bundle(provider_model_bundle: ProviderModelBundle, model: str) -> dict:
"""
Fetch credentials from provider model bundle
:param provider_model_bundle: provider model bundle
:param model: model name
:return:
"""
configuration = provider_model_bundle.configuration
model_type = provider_model_bundle.model_type_instance.model_type
credentials = configuration.get_current_credentials(model_type=model_type, model=model)
if credentials is None:
raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")
return credentials
@staticmethod
def _get_load_balancing_manager(
configuration: ProviderConfiguration, model_type: ModelType, model: str, credentials: dict
) -> Optional["LBModelManager"]:
"""
Get load balancing model credentials
:param configuration: provider configuration
:param model_type: model type
:param model: model name
:param credentials: model credentials
:return:
"""
if configuration.model_settings and configuration.using_provider_type == ProviderType.CUSTOM:
current_model_setting = None
# check if model is disabled by admin
for model_setting in configuration.model_settings:
if model_setting.model_type == model_type and model_setting.model == model:
current_model_setting = model_setting
break
# check if load balancing is enabled
if current_model_setting and current_model_setting.load_balancing_configs:
# use load balancing proxy to choose credentials
lb_model_manager = LBModelManager(
tenant_id=configuration.tenant_id,
provider=configuration.provider.provider,
model_type=model_type,
model=model,
load_balancing_configs=current_model_setting.load_balancing_configs,
managed_credentials=credentials if configuration.custom_configuration.provider else None,
)
return lb_model_manager
return None
def invoke_llm(
self,
prompt_messages: list[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
) -> Union[LLMResult, Generator]:
"""
Invoke large language model
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:param callbacks: callbacks
:return: full response or stream response chunk generator result
"""
if not isinstance(self.model_type_instance, LargeLanguageModel):
raise Exception("Model type instance is not LargeLanguageModel")
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.invoke,
model=self.model,
credentials=self.credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
callbacks=callbacks,
)
def get_llm_num_tokens(
self, prompt_messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
) -> int:
"""
Get number of tokens for llm
:param prompt_messages: prompt messages
:param tools: tools for tool calling
:return:
"""
if not isinstance(self.model_type_instance, LargeLanguageModel):
raise Exception("Model type instance is not LargeLanguageModel")
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.get_num_tokens,
model=self.model,
credentials=self.credentials,
prompt_messages=prompt_messages,
tools=tools,
)
def invoke_text_embedding(
self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
) -> TextEmbeddingResult:
"""
Invoke large language model
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
if not isinstance(self.model_type_instance, TextEmbeddingModel):
raise Exception("Model type instance is not TextEmbeddingModel")
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.invoke,
model=self.model,
credentials=self.credentials,
texts=texts,
user=user,
input_type=input_type,
)
def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
"""
Get number of tokens for text embedding
:param texts: texts to embed
:return:
"""
if not isinstance(self.model_type_instance, TextEmbeddingModel):
raise Exception("Model type instance is not TextEmbeddingModel")
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.get_num_tokens,
model=self.model,
credentials=self.credentials,
texts=texts,
)
def invoke_rerank(
self,
query: str,
docs: list[str],
score_threshold: Optional[float] = None,
top_n: Optional[int] = None,
user: Optional[str] = None,
) -> RerankResult:
"""
Invoke rerank model
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n
:param user: unique user id
:return: rerank result
"""
if not isinstance(self.model_type_instance, RerankModel):
raise Exception("Model type instance is not RerankModel")
self.model_type_instance = cast(RerankModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.invoke,
model=self.model,
credentials=self.credentials,
query=query,
docs=docs,
score_threshold=score_threshold,
top_n=top_n,
user=user,
)
def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool:
"""
Invoke moderation model
:param text: text to moderate
:param user: unique user id
:return: false if text is safe, true otherwise
"""
if not isinstance(self.model_type_instance, ModerationModel):
raise Exception("Model type instance is not ModerationModel")
self.model_type_instance = cast(ModerationModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.invoke,
model=self.model,
credentials=self.credentials,
text=text,
user=user,
)
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str:
"""
Invoke large language model
:param file: audio file
:param user: unique user id
:return: text for given audio file
"""
if not isinstance(self.model_type_instance, Speech2TextModel):
raise Exception("Model type instance is not Speech2TextModel")
self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.invoke,
model=self.model,
credentials=self.credentials,
file=file,
user=user,
)
def invoke_tts(self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None) -> Iterable[bytes]:
"""
Invoke large language tts model
:param content_text: text content to be translated
:param tenant_id: user tenant id
:param voice: model timbre
:param user: unique user id
:return: text for given audio file
"""
if not isinstance(self.model_type_instance, TTSModel):
raise Exception("Model type instance is not TTSModel")
self.model_type_instance = cast(TTSModel, self.model_type_instance)
return self._round_robin_invoke(
function=self.model_type_instance.invoke,
model=self.model,
credentials=self.credentials,
content_text=content_text,
user=user,
tenant_id=tenant_id,
voice=voice,
)
def _round_robin_invoke(self, function: Callable[..., Any], *args, **kwargs):
"""
Round-robin invoke
:param function: function to invoke
:param args: function args
:param kwargs: function kwargs
:return:
"""
if not self.load_balancing_manager:
return function(*args, **kwargs)
last_exception = None
while True:
lb_config = self.load_balancing_manager.fetch_next()
if not lb_config:
if not last_exception:
raise ProviderTokenNotInitError("Model credentials is not initialized.")
else:
raise last_exception
try:
if "credentials" in kwargs:
del kwargs["credentials"]
return function(*args, **kwargs, credentials=lb_config.credentials)
except InvokeRateLimitError as e:
# expire in 60 seconds
self.load_balancing_manager.cooldown(lb_config, expire=60)
last_exception = e
continue
except (InvokeAuthorizationError, InvokeConnectionError) as e:
# expire in 10 seconds
self.load_balancing_manager.cooldown(lb_config, expire=10)
last_exception = e
continue
except Exception as e:
raise e
def get_tts_voices(self, language: Optional[str] = None) -> list:
"""
Invoke large language tts model voices
:param language: tts language
:return: tts model voices
"""
if not isinstance(self.model_type_instance, TTSModel):
raise Exception("Model type instance is not TTSModel")
self.model_type_instance = cast(TTSModel, self.model_type_instance)
return self.model_type_instance.get_tts_model_voices(
model=self.model, credentials=self.credentials, language=language
)
class ModelManager:
def __init__(self) -> None:
self._provider_manager = ProviderManager()
def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
"""
Get model instance
:param tenant_id: tenant id
:param provider: provider name
:param model_type: model type
:param model: model name
:return:
"""
if not provider:
return self.get_default_model_instance(tenant_id, model_type)
provider_model_bundle = self._provider_manager.get_provider_model_bundle(
tenant_id=tenant_id, provider=provider, model_type=model_type
)
return ModelInstance(provider_model_bundle, model)
def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]:
"""
Return first provider and the first model in the provider
:param tenant_id: tenant id
:param model_type: model type
:return: provider name, model name
"""
return self._provider_manager.get_first_provider_first_model(tenant_id, model_type)
def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
"""
Get default model instance
:param tenant_id: tenant id
:param model_type: model type
:return:
"""
default_model_entity = self._provider_manager.get_default_model(tenant_id=tenant_id, model_type=model_type)
if not default_model_entity:
raise ProviderTokenNotInitError(f"Default model not found for {model_type}")
return self.get_model_instance(
tenant_id=tenant_id,
provider=default_model_entity.provider.provider,
model_type=model_type,
model=default_model_entity.model,
)
class LBModelManager:
def __init__(
self,
tenant_id: str,
provider: str,
model_type: ModelType,
model: str,
load_balancing_configs: list[ModelLoadBalancingConfiguration],
managed_credentials: Optional[dict] = None,
) -> None:
"""
Load balancing model manager
:param tenant_id: tenant_id
:param provider: provider
:param model_type: model_type
:param model: model name
:param load_balancing_configs: all load balancing configurations
:param managed_credentials: credentials if load balancing configuration name is __inherit__
"""
self._tenant_id = tenant_id
self._provider = provider
self._model_type = model_type
self._model = model
self._load_balancing_configs = load_balancing_configs
for load_balancing_config in self._load_balancing_configs[:]: # Iterate over a shallow copy of the list
if load_balancing_config.name == "__inherit__":
if not managed_credentials:
# remove __inherit__ if managed credentials is not provided
self._load_balancing_configs.remove(load_balancing_config)
else:
load_balancing_config.credentials = managed_credentials
def fetch_next(self) -> Optional[ModelLoadBalancingConfiguration]:
"""
Get next model load balancing config
Strategy: Round Robin
:return:
"""
cache_key = "model_lb_index:{}:{}:{}:{}".format(
self._tenant_id, self._provider, self._model_type.value, self._model
)
cooldown_load_balancing_configs = []
max_index = len(self._load_balancing_configs)
while True:
current_index = redis_client.incr(cache_key)
current_index = cast(int, current_index)
if current_index >= 10000000:
current_index = 1
redis_client.set(cache_key, current_index)
redis_client.expire(cache_key, 3600)
if current_index > max_index:
current_index = current_index % max_index
real_index = current_index - 1
if real_index > max_index:
real_index = 0
config = self._load_balancing_configs[real_index]
if self.in_cooldown(config):
cooldown_load_balancing_configs.append(config)
if len(cooldown_load_balancing_configs) >= len(self._load_balancing_configs):
# all configs are in cooldown
return None
continue
if bool(os.environ.get("DEBUG", "False").lower() == "true"):
logger.info(
f"Model LB\nid: {config.id}\nname:{config.name}\n"
f"tenant_id: {self._tenant_id}\nprovider: {self._provider}\n"
f"model_type: {self._model_type.value}\nmodel: {self._model}"
)
return config
return None
def cooldown(self, config: ModelLoadBalancingConfiguration, expire: int = 60) -> None:
"""
Cooldown model load balancing config
:param config: model load balancing config
:param expire: cooldown time
:return:
"""
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
self._tenant_id, self._provider, self._model_type.value, self._model, config.id
)
redis_client.setex(cooldown_cache_key, expire, "true")
def in_cooldown(self, config: ModelLoadBalancingConfiguration) -> bool:
"""
Check if model load balancing config is in cooldown
:param config: model load balancing config
:return:
"""
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
self._tenant_id, self._provider, self._model_type.value, self._model, config.id
)
res = redis_client.exists(cooldown_cache_key)
res = cast(bool, res)
return res
@staticmethod
def get_config_in_cooldown_and_ttl(
tenant_id: str, provider: str, model_type: ModelType, model: str, config_id: str
) -> tuple[bool, int]:
"""
Get model load balancing config is in cooldown and ttl
:param tenant_id: workspace id
:param provider: provider name
:param model_type: model type
:param model: model name
:param config_id: model load balancing config id
:return:
"""
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
tenant_id, provider, model_type.value, model, config_id
)
ttl = redis_client.ttl(cooldown_cache_key)
if ttl == -2:
return False, 0
ttl = cast(int, ttl)
return True, ttl
|