File size: 7,424 Bytes
f91ed7d
 
628d1e3
f91ed7d
 
 
73fb5bb
 
f91ed7d
 
73fb5bb
f91ed7d
73fb5bb
 
 
 
 
 
f91ed7d
 
b3d79bf
f91ed7d
d7f8dc2
f73af86
f91ed7d
d7f8dc2
 
f73af86
f91ed7d
73fb5bb
 
f91ed7d
73fb5bb
 
 
 
 
 
628d1e3
 
97729c5
628d1e3
 
 
 
 
f8d1b81
628d1e3
 
73fb5bb
628d1e3
 
 
73fb5bb
 
628d1e3
 
 
647e116
628d1e3
 
 
 
 
 
 
 
 
 
73fb5bb
 
 
 
f91ed7d
73fb5bb
 
628d1e3
 
c208b95
f73af86
73fb5bb
 
 
628d1e3
73fb5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
c208b95
628d1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73af86
628d1e3
 
 
 
 
 
 
f91ed7d
 
 
f73af86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91ed7d
f73af86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91ed7d
f73af86
 
 
f91ed7d
f73af86
 
f91ed7d
f73af86
 
 
 
f91ed7d
f73af86
 
 
 
 
 
 
 
f91ed7d
73fb5bb
c208b95
 
 
 
 
 
 
 
73fb5bb
c208b95
 
 
 
f73af86
c208b95
 
 
 
 
 
73fb5bb
f91ed7d
 
c208b95
f73af86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
from transformers import pipeline
from io import StringIO

unmasker = pipeline('fill-mask', model='dsfsi/zabantu-nso-ven-170m')

st.set_page_config(layout="wide")

def fill_mask(sentences):
    results = {}
    warnings = []
    for sentence in sentences:
        if "<mask>" in sentence:
            unmasked = unmasker(sentence)
            results[sentence] = unmasked
        else:
            warnings.append(f"Warning: No <mask> token found in sentence: {sentence}")
    return results, warnings

def replace_mask(sentence, predicted_word):
    return sentence.replace("<mask>", f"**{predicted_word}**")

st.title("Fill Mask | Zabantu-nso-ven-170m")
st.write(f"")

st.markdown("This is a variant of Zabantu pre-trained on a multilingual dataset of Tshivenda(ven) and Sepedi(nso) sentences on a transformer network with 170 million traininable parameters.")

col1, col2 = st.columns(2)

if 'text_input' not in st.session_state:
    st.session_state['text_input'] = ""

if 'warnings' not in st.session_state:
    st.session_state['warnings'] = []

with col1:
    with st.container(border=True):
        st.markdown("Input :clipboard:")

        select_options = ['Choose option', 'Enter text input', 'Upload a file(csv/txt)']
        sample_sentence = "Rabulasi wa <mask> u khou bvelela nga u lima."

        option_selected = st.selectbox(f"Select an input option:", select_options, index=0)

        if option_selected == 'Enter text input':
            text_input = st.text_area(
                "Enter sentences with <mask> token(one sentence per line):",
                value=st.session_state['text_input']
            )
        
            input_sentences = text_input.split("\n")
    
            if st.button("Submit",use_container_width=True):
                result, warnings = fill_mask(input_sentences)
                st.session_state['warnings'] = warnings 

        if option_selected == 'Upload a file(csv/txt)':
            
            uploaded_file = st.file_uploader("Choose a file-(one sentence per line)")
            if uploaded_file is not None:
                
                stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
                string_data = stringio.read()
                
                input_sentences = string_data.split("\n")
    
                if st.button("Submit",use_container_width=True):
                    result, warnings = fill_mask(input_sentences)
                    st.session_state['warnings'] = warnings 
    
        if st.session_state['warnings']:
            for warning in st.session_state['warnings']:
                st.warning(warning)

        st.markdown("Example")
        st.code(sample_sentence, wrap_lines=True)
        if st.button("Test Example",use_container_width=True):
            result, warnings = fill_mask(sample_sentence.split("\n"))

with col2:
    with st.container(border=True):
        st.markdown("Output :bar_chart:")
        if 'result' in locals() and result:  
            if len(result) == 1:
                for sentence, predictions in result.items():
                    for prediction in predictions:
                        predicted_word = prediction['token_str']
                        score = prediction['score'] * 100
    
                        st.markdown(f"""
                        <div class="bar">
                            <div class="bar-fill" style="width: {score}%;"></div>
                        </div>
                        <div class="container">
                            <div style="align-items: left;">{predicted_word}</div>
                            <div style="align-items: center;">{score:.2f}%</div>
                        </div>
                        """, unsafe_allow_html=True)

            else:
                index = 0
                for sentence, predictions in result.items():
                    index += 1
                    if predictions:
                        top_prediction = predictions[0]
                        predicted_word = top_prediction['token_str']
                        score = top_prediction['score'] * 100
    
                        st.markdown(f"""
                        <div class="bar">
                            <div class="bar-fill" style="width: {score}%;"></div>
                        </div>
                        <div class="container">
                            <div style="align-items: left;">{predicted_word} (line {index})</div>
                            <div style="align-items: right;">{score:.2f}%</div>
                        </div>
                        """, unsafe_allow_html=True)

                
if 'result' in locals():  
    if result:
        line = 0
        for sentence, predictions in result.items():
            line += 1
            predicted_word = predictions[0]['token_str']
            full_sentence = replace_mask(sentence, predicted_word)
            st.write(f"**Sentence {line}:** {full_sentence }")

css = """
<style>
footer {display:none !important;}

.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(66, 133, 244) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
    --tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
    --tw-gradient-from: rgb(17, 20, 45) !important;
    --tw-gradient-to: rgb(255 150 51 / 0);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500{
    --tw-gradient-from:rgb(17, 20, 45) !important; 
    --tw-gradient-to: rgb(37 56 133 / 37%);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500{
    --tw-text-opacity: 1 !important;
    color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}

.container {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin-bottom: 5px;
    width: 100%;
}
.bar {
    # width: 70%;
    background-color: #e6e6e6;
    border-radius: 12px;
    overflow: hidden;
    margin-right: 10px;
    height: 5px;
}
.bar-fill {
    background-color: #17152e;
    height: 100%;
    border-radius: 12px;
}

</style>
"""

st.markdown(css, unsafe_allow_html=True)