File size: 5,330 Bytes
5e22eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
import scipy
from scipy import signal
import pickle

def get_data_preview(file):
    data = pd.read_csv(file.name)
    return data.head()

def label_data(file, start, end, label):
    data = pd.read_csv(file.name)
    data.loc[start:end, 'label'] = label  # Label the specified range
    return data

def preprocess_data(data):
    data.drop(columns=data.columns[0], axis=1, inplace=True)
    data.columns = ['raw_eeg', 'label']
    raw_data = data['raw_eeg']
    labels_old = data['label']

    sampling_rate = 512
    notch_freq = 50.0
    lowcut, highcut = 0.5, 30.0

    nyquist = (0.5 * sampling_rate)
    notch_freq_normalized = notch_freq / nyquist
    b_notch, a_notch = signal.iirnotch(notch_freq_normalized, Q=0.05, fs=sampling_rate)

    lowcut_normalized = lowcut / nyquist
    highcut_normalized = highcut / nyquist
    b_bandpass, a_bandpass = signal.butter(4, [lowcut_normalized, highcut_normalized], btype='band')

    features = []
    labels = []

    def calculate_psd_features(segment, sampling_rate):
        f, psd_values = scipy.signal.welch(segment, fs=sampling_rate, nperseg=len(segment))
        alpha_indices = np.where((f >= 8) & (f <= 13))
        beta_indices = np.where((f >= 14) & (f <= 30))
        theta_indices = np.where((f >= 4) & (f <= 7))
        delta_indices = np.where((f >= 0.5) & (f <= 3))
        energy_alpha = np.sum(psd_values[alpha_indices])
        energy_beta = np.sum(psd_values[beta_indices])
        energy_theta = np.sum(psd_values[theta_indices])
        energy_delta = np.sum(psd_values[delta_indices])
        alpha_beta_ratio = energy_alpha / energy_beta
        return {
            'E_alpha': energy_alpha,
            'E_beta': energy_beta,
            'E_theta': energy_theta,
            'E_delta': energy_delta,
            'alpha_beta_ratio': alpha_beta_ratio
        }

    def calculate_additional_features(segment, sampling_rate):
        f, psd = scipy.signal.welch(segment, fs=sampling_rate, nperseg=len(segment))
        peak_frequency = f[np.argmax(psd)]
        spectral_centroid = np.sum(f * psd) / np.sum(psd)
        log_f = np.log(f[1:])
        log_psd = np.log(psd[1:])
        spectral_slope = np.polyfit(log_f, log_psd, 1)[0]
        return {
            'peak_frequency': peak_frequency,
            'spectral_centroid': spectral_centroid,
            'spectral_slope': spectral_slope
        }

    for i in range(0, len(raw_data) - 512, 256):
        segment = raw_data.loc[i:i+512]
        segment = pd.to_numeric(segment, errors='coerce')
        segment = signal.filtfilt(b_notch, a_notch, segment)
        segment = signal.filtfilt(b_bandpass, a_bandpass, segment)
        segment_features = calculate_psd_features(segment, 512)
        additional_features = calculate_additional_features(segment, 512)
        segment_features = {**segment_features, **additional_features}
        features.append(segment_features)
        labels.append(labels_old[i])

    columns = ['E_alpha', 'E_beta', 'E_theta', 'E_delta', 'alpha_beta_ratio', 'peak_frequency', 'spectral_centroid', 'spectral_slope']
    df_features = pd.DataFrame(features, columns=columns)
    df_features['label'] = labels
    return df_features

def train_model(data):
    scaler = StandardScaler()
    X = data.drop('label', axis=1)
    y = data['label']
    X_scaled = scaler.fit_transform(X)
    X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
    
    param_grid = {'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']}
    svc = SVC(probability=True)
    grid_search = GridSearchCV(estimator=svc, param_grid=param_grid, cv=5, verbose=2, n_jobs=-1)
    grid_search.fit(X_train, y_train)
    
    model = grid_search.best_estimator_
    model_filename = 'model.pkl'
    scaler_filename = 'scaler.pkl'
    
    with open(model_filename, 'wb') as file:
        pickle.dump(model, file)
    
    with open(scaler_filename, 'wb') as file:
        pickle.dump(scaler, file)
    
    return f"Training complete! Model and scaler saved.", gr.File(model_filename), gr.File(scaler_filename)


with gr.Blocks() as demo:
    file_input = gr.File(label="Upload CSV File")
    data_preview = gr.Dataframe(label="Data Preview", interactive=False)
    start_input = gr.Number(label="Start Index", value=0)
    end_input = gr.Number(label="End Index", value=100)
    label_input = gr.Number(label="Label Value", value=1)
    labeled_data_preview = gr.Dataframe(label="Labeled Data Preview", interactive=False)
    training_status = gr.Textbox(label="Training Status")
    model_file = gr.File(label="Download Trained Model")
    scaler_file = gr.File(label="Download Scaler")

    file_input.upload(get_data_preview, inputs=file_input, outputs=data_preview)
    label_button = gr.Button("Label Data")
    label_button.click(label_data, inputs=[file_input, start_input, end_input, label_input], outputs=labeled_data_preview)
    train_button = gr.Button("Train Model")
    train_button.click(train_model, inputs=labeled_data_preview, outputs=[training_status, model_file, scaler_file])

demo.launch()