File size: 4,872 Bytes
bcd0fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/bin/bash
# Script to find and copy setup files

echo "Searching for setup_claude.sh and SETUP_INSTRUCTIONS.md..."
find / -name "setup_claude.sh" 2>/dev/null
find / -name "SETUP_INSTRUCTIONS.md" 2>/dev/null

# Create the files directly in the current directory
echo "Creating files directly..."

# Create setup_claude.sh
cat > setup_claude.sh << 'EOL'
#!/bin/bash
# Setup script for Claude in VS Code on Hugging Face Space

echo "Setting up Python environment for working with Claude..."

# Create a virtual environment
python -m venv ~/claude-env

# Activate the virtual environment
source ~/claude-env/bin/activate

# Install required packages
pip install -U huggingface_hub gradio transformers datasets sentence-transformers faiss-cpu torch langchain

# Create initial files
mkdir -p ~/hf_implementation
cd ~/hf_implementation

# Create a simple Gradio app
cat > app.py << 'EOF'
import gradio as gr
import os

def process_file(file):
    """Process an uploaded file."""
    filename = os.path.basename(file.name)
    return f"File {filename} would be processed using HF models."

def query_index(query):
    """Query the RAG index."""
    return f"Query: {query}\nResponse: This is a placeholder. The real implementation will use sentence-transformers and FAISS."

# Create the Gradio interface
with gr.Blocks(title="RAG Document Processor") as demo:
    gr.Markdown("# RAG Document Processing System")
    
    with gr.Tab("Upload & Process"):
        file_input = gr.File(label="Upload Document")
        process_button = gr.Button("Process Document")
        output = gr.Textbox(label="Processing Result")
        process_button.click(process_file, inputs=file_input, outputs=output)
    
    with gr.Tab("Query Documents"):
        query_input = gr.Textbox(label="Enter your query")
        query_button = gr.Button("Search")
        response = gr.Textbox(label="Response")
        query_button.click(query_index, inputs=query_input, outputs=response)

# Launch the app
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)
EOF

# Create a sample implementation file
cat > hf_embeddings.py << 'EOF'
"""
Embeddings module using sentence-transformers.
"""
from sentence_transformers import SentenceTransformer
import numpy as np

class HFEmbeddings:
    def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
        """Initialize the embedding model.
        
        Args:
            model_name: Name of the sentence-transformers model to use
        """
        self.model = SentenceTransformer(model_name)
        
    def embed_texts(self, texts):
        """Generate embeddings for a list of texts.
        
        Args:
            texts: List of strings to embed
            
        Returns:
            List of embedding vectors
        """
        return self.model.encode(texts)
    
    def embed_query(self, query):
        """Generate embedding for a query string.
        
        Args:
            query: Query string
            
        Returns:
            Embedding vector
        """
        return self.model.encode(query)
EOF

# Create a README for the implementation
cat > README.md << 'EOF'
# Hugging Face RAG Implementation

This directory contains the Hugging Face native implementation of the RAG system.

## Files
- `app.py` - Gradio interface for the RAG system
- `hf_embeddings.py` - Embedding generation with sentence-transformers

## Running the Application
```bash
python app.py
```

## Implementation Plan
See `CLAUDE_HF.md` in the main directory for the complete implementation plan.
EOF

echo "Setup complete!"
echo "To use the environment:"
echo "1. Run 'source ~/claude-env/bin/activate'"
echo "2. Navigate to '~/hf_implementation'"
echo "3. Run 'python app.py' to start the Gradio interface"
EOL

# Make the script executable
chmod +x setup_claude.sh

# Create SETUP_INSTRUCTIONS.md
cat > SETUP_INSTRUCTIONS.md << 'EOL'
# Using Claude with Hugging Face Space

Since you're facing permission issues in the VS Code terminal, follow these steps:

1. In the VS Code terminal, run:
   ```bash
   chmod +x setup_claude.sh
   ./setup_claude.sh
   ```

2. This will:
   - Create a Python virtual environment
   - Install necessary packages
   - Set up a basic implementation in ~/hf_implementation

3. After installation, activate the environment:
   ```bash
   source ~/claude-env/bin/activate
   ```

4. Navigate to the implementation directory:
   ```bash
   cd ~/hf_implementation
   ```

5. Run the Gradio app:
   ```bash
   python app.py
   ```

## Next Steps

With this setup, you can:
1. Create the HF implementation files
2. Develop without root permissions
3. Run your RAG application with Hugging Face models

Refer to CLAUDE_HF.md for the implementation details.
EOL

echo "Files created successfully in the current directory."
echo "You can now run: ./setup_claude.sh"