Spaces:
Runtime error
Runtime error
File size: 4,872 Bytes
bcd0fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
#!/bin/bash
# Script to find and copy setup files
echo "Searching for setup_claude.sh and SETUP_INSTRUCTIONS.md..."
find / -name "setup_claude.sh" 2>/dev/null
find / -name "SETUP_INSTRUCTIONS.md" 2>/dev/null
# Create the files directly in the current directory
echo "Creating files directly..."
# Create setup_claude.sh
cat > setup_claude.sh << 'EOL'
#!/bin/bash
# Setup script for Claude in VS Code on Hugging Face Space
echo "Setting up Python environment for working with Claude..."
# Create a virtual environment
python -m venv ~/claude-env
# Activate the virtual environment
source ~/claude-env/bin/activate
# Install required packages
pip install -U huggingface_hub gradio transformers datasets sentence-transformers faiss-cpu torch langchain
# Create initial files
mkdir -p ~/hf_implementation
cd ~/hf_implementation
# Create a simple Gradio app
cat > app.py << 'EOF'
import gradio as gr
import os
def process_file(file):
"""Process an uploaded file."""
filename = os.path.basename(file.name)
return f"File {filename} would be processed using HF models."
def query_index(query):
"""Query the RAG index."""
return f"Query: {query}\nResponse: This is a placeholder. The real implementation will use sentence-transformers and FAISS."
# Create the Gradio interface
with gr.Blocks(title="RAG Document Processor") as demo:
gr.Markdown("# RAG Document Processing System")
with gr.Tab("Upload & Process"):
file_input = gr.File(label="Upload Document")
process_button = gr.Button("Process Document")
output = gr.Textbox(label="Processing Result")
process_button.click(process_file, inputs=file_input, outputs=output)
with gr.Tab("Query Documents"):
query_input = gr.Textbox(label="Enter your query")
query_button = gr.Button("Search")
response = gr.Textbox(label="Response")
query_button.click(query_index, inputs=query_input, outputs=response)
# Launch the app
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
EOF
# Create a sample implementation file
cat > hf_embeddings.py << 'EOF'
"""
Embeddings module using sentence-transformers.
"""
from sentence_transformers import SentenceTransformer
import numpy as np
class HFEmbeddings:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
"""Initialize the embedding model.
Args:
model_name: Name of the sentence-transformers model to use
"""
self.model = SentenceTransformer(model_name)
def embed_texts(self, texts):
"""Generate embeddings for a list of texts.
Args:
texts: List of strings to embed
Returns:
List of embedding vectors
"""
return self.model.encode(texts)
def embed_query(self, query):
"""Generate embedding for a query string.
Args:
query: Query string
Returns:
Embedding vector
"""
return self.model.encode(query)
EOF
# Create a README for the implementation
cat > README.md << 'EOF'
# Hugging Face RAG Implementation
This directory contains the Hugging Face native implementation of the RAG system.
## Files
- `app.py` - Gradio interface for the RAG system
- `hf_embeddings.py` - Embedding generation with sentence-transformers
## Running the Application
```bash
python app.py
```
## Implementation Plan
See `CLAUDE_HF.md` in the main directory for the complete implementation plan.
EOF
echo "Setup complete!"
echo "To use the environment:"
echo "1. Run 'source ~/claude-env/bin/activate'"
echo "2. Navigate to '~/hf_implementation'"
echo "3. Run 'python app.py' to start the Gradio interface"
EOL
# Make the script executable
chmod +x setup_claude.sh
# Create SETUP_INSTRUCTIONS.md
cat > SETUP_INSTRUCTIONS.md << 'EOL'
# Using Claude with Hugging Face Space
Since you're facing permission issues in the VS Code terminal, follow these steps:
1. In the VS Code terminal, run:
```bash
chmod +x setup_claude.sh
./setup_claude.sh
```
2. This will:
- Create a Python virtual environment
- Install necessary packages
- Set up a basic implementation in ~/hf_implementation
3. After installation, activate the environment:
```bash
source ~/claude-env/bin/activate
```
4. Navigate to the implementation directory:
```bash
cd ~/hf_implementation
```
5. Run the Gradio app:
```bash
python app.py
```
## Next Steps
With this setup, you can:
1. Create the HF implementation files
2. Develop without root permissions
3. Run your RAG application with Hugging Face models
Refer to CLAUDE_HF.md for the implementation details.
EOL
echo "Files created successfully in the current directory."
echo "You can now run: ./setup_claude.sh"
|