File size: 14,372 Bytes
e341fe0
82f61d3
 
7b75e42
 
 
 
a5ad3e2
 
 
 
3685b52
b6ac52e
 
 
 
e643f21
 
2f6a843
e643f21
 
 
 
 
7b75e42
df698fa
9781136
 
 
bc25371
 
65574c1
7b75e42
 
 
b6ac52e
 
 
 
 
 
 
 
 
 
 
68eb9cb
b6ac52e
 
7b75e42
 
 
65574c1
68eb9cb
7b75e42
e643f21
7b75e42
 
 
65574c1
7b75e42
 
 
b6ac52e
 
 
 
 
 
 
 
 
 
 
f13cfcf
b6ac52e
 
 
 
 
 
 
 
f13cfcf
65574c1
c19900d
 
 
 
f13cfcf
 
7b75e42
b6ac52e
 
 
 
 
 
 
 
f13cfcf
b6ac52e
f13cfcf
7b75e42
65574c1
 
 
 
 
3685b52
65574c1
 
 
 
 
 
 
 
 
3685b52
7b75e42
4f9bee5
65574c1
3685b52
 
 
 
 
f13cfcf
7b75e42
 
65574c1
 
 
 
 
 
 
7b75e42
557f1db
7b75e42
 
65574c1
 
 
 
b6ac52e
 
557f1db
65574c1
7b75e42
65574c1
7b75e42
65574c1
7b75e42
65574c1
7b75e42
c19900d
65574c1
 
7b75e42
c19900d
f13cfcf
65574c1
f13cfcf
c19900d
 
 
 
 
 
a5ad3e2
65574c1
 
 
 
 
 
 
 
 
 
7b75e42
557f1db
65574c1
 
 
 
 
7b75e42
65574c1
 
 
 
 
f13cfcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65574c1
7b75e42
557f1db
b6ac52e
 
7b75e42
f13cfcf
 
 
65574c1
3685b52
 
e341fe0
791bf19
9781136
592e7f1
 
 
791bf19
 
fbb3e96
592e7f1
791bf19
f13cfcf
 
 
 
c19900d
791bf19
f13cfcf
791bf19
592e7f1
c31508a
791bf19
c31508a
 
 
 
 
 
 
 
 
40f681c
fbb3e96
40f681c
 
 
 
 
 
c31508a
93c0471
40f681c
93c0471
f13cfcf
e195f0d
f13cfcf
 
 
 
 
 
7b6c56e
e643f21
 
 
2fe8c42
b86704e
a016f91
 
b86704e
 
 
 
 
2fe8c42
b86704e
 
 
 
2fe8c42
557f1db
 
 
 
 
 
 
aa6dc28
 
 
0c0c62e
aa6dc28
 
 
2fe8c42
7224066
 
27d00af
4f9bee5
 
e2f9eb8
7224066
 
6e4b4c2
7224066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13cfcf
 
7224066
 
5d988bf
aa6dc28
791bf19
7224066
3685b52
e195f0d
 
3685b52
b6ac52e
 
387da23
b6ac52e
 
 
f13cfcf
40f681c
 
 
 
 
f13cfcf
e643f21
 
b6ac52e
 
e643f21
 
 
 
 
c31508a
fbb3e96
c31508a
 
 
fbb3e96
b6ac52e
40f681c
 
387da23
40f681c
 
 
 
b6ac52e
e643f21
3685b52
 
e195f0d
40f681c
c31508a
4f9bee5
3685b52
 
e195f0d
40f681c
c31508a
b6ac52e
4f9bee5
 
e9d28c0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
import fitz  # PyMuPDF
import faiss
from sentence_transformers import SentenceTransformer
import os
import uuid
from PIL import Image
from diffusers import AutoPipelineForText2Image
import torch

import gradio as gr
from huggingface_hub import InferenceClient
import fitz  # PyMuPDF
import faiss
from sentence_transformers import SentenceTransformer
import os
from diffusers import StableDiffusionPipeline
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""



client = InferenceClient(provider="novita")

image_client = InferenceClient(provider="fal-ai")

model_checking="deepseek-ai/DeepSeek-V3"
#"meta-llama/Llama-3.1-8B-Instruct"

folder_path = "./"
filenames = ["Vance.pdf", "TP.pdf"]
chunk_size = 600

all_chunks = []
for filename in filenames:
    file_path = folder_path + filename
    doc = fitz.open(file_path)
    for page in doc:
        text = page.get_text()
        chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
        all_chunks.extend(chunks)

embedder = SentenceTransformer("all-MiniLM-L6-v2")
embedder = embedder.to("cuda")  
embeddings = embedder.encode(all_chunks)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)

# RAG retrieve
@spaces.GPU
def retrieve(query, top_k=3):
    q_embed = embedder.encode([query])
    D, I = index.search(q_embed, top_k)
    return [all_chunks[i] for i in I[0]]

#Score Method
respect_score = 0
rude_score = 0
coward_score = 0

def parse_binary_response(response_text):
    text = response_text.strip().lower()
    return text in ["no"]

def score_and_update(category, response_text):
    global respect_score, rude_score, coward_score

    response = response_text.strip().lower()

    if category == "respect":
        delta = 3 if response == "no" else -1
        respect_score += delta
    elif category == "rude":
        delta = 0 if response == "no" else 2
        rude_score += delta
    elif category == "coward":
        delta = -1 if response == "no" else 1
        coward_score += delta

    #print(f"[Score Update] Respect: {respect_score}, Rude: {rude_score}, Coward: {coward_score}")

    if any(score >= 20 for score in [respect_score, rude_score, coward_score]):
        return "πŸ’₯ Chat Failed: Trump is furious or disgusted."
    elif any(score <= -10 for score in [respect_score, rude_score, coward_score]):
        return "πŸŽ‰ Chat Success: Trump is impressed or feels respected."
    #else:
    return "continue"

def reset_game():
    global respect_score, rude_score, coward_score, history
    respect_score = 0
    rude_score = 0
    coward_score = 0
    history = []

def trump_style_prompt():
    if respect_score > 5:
        return "Respond rudely and angryly."
    elif respect_score < -5:
        return "Respond with some kindness and respect."
    else:
        return "Respond with confident and arrogant."
    
#General Model


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    if history is None or len(history) == 0:
        reset_game()
    mess = [{"role": "system", "content": system_message}]
    
 
    for user_msg, assistant_msg in history:
        if user_msg:
            mess.append({"role": "user", "content": user_msg})
        if assistant_msg:
            mess.append({"role": "assistant", "content": assistant_msg})
#Respond to Action            
    if message.lower().startswith("action:"):
        action = message[7:].strip()
    
        trump_response_prompt = (
            f"I just did this to you: '{action}'. "
            "Respond in character β€” simple, arrogant, rude or kind based on how much you liked it."
            "Just answer the user question like Trump would." 
        )
        mess.append({"role": "user", "content": trump_response_prompt})
        chat = client.chat.completions.create(
            model=model_checking,
            messages=mess
        )
        
        action_prompt = (
            f"You are Trump. The user just did the following to you: '{action}'. "
            f"Do you like it? Respond with only 'Like' or 'Dislike'. No explanation."
        )
        response = client.chat.completions.create(
            model=model_checking,
            messages=[{"role": "system", "content": action_prompt}]
        )
        
        sentiment = response.choices[0].message.content.strip().lower()

        global respect_score, rude_score, coward_score
        
        if sentiment == "like":
            respect_score -= 3
            coward_score  += 3
            
        else:
            respect_score += 5
            #rude_score += 5

#Game Termination
        if any(score >= 20 for score in [respect_score, rude_score, coward_score]):
            reset_game()
            return "πŸ’₯ Chat Failed: Trump is furious or disgusted."
        elif any(score <= -10 for score in [respect_score, rude_score, coward_score]):
            reset_game()
            return "πŸŽ‰ Chat Success: Trump is impressed or broken."

        return chat.choices[0].message.content
        
    attitude_prompt = trump_style_prompt()
    rag_context = "\n".join(retrieve(f'How trump or vance will reply this{message}'))  
    mess.append({"role": "user", "content": (
        f"The following context may help you understand how Trump and Vance speak:\n{rag_context}\n\n"
        f"Now answer the user question like Trump would:\n User: {message}"
        f"{attitude_prompt}"
    )})
    
    completion = client.chat.completions.create(
    model=model_checking,
    messages=mess,
    max_tokens=300,
)
    
#Score the message
    scoring_prompts = {
            "respect":(f"You are Trump. Based on the user message below, respond only with either 'Respect Me' or 'no'.\n"
                f"Your answer must be exactly one of these two words. No other text, no punctuation.\n"
                f"For example:\n"
                f"User: Thank you Mr. President!\nAnswer: Like\n"
                f"User: You lied to us.\nAnswer: no\n"
                f"\nUser: {message}\nAnswer:")
            #"rude":(f"Based on the user message below, respond only with either 'Very Rude' or 'no'.\n"
             #   f"Your answer must be exactly one of these two words. No other text, no punctuation.\n"
              #  f"For example:\n"
               # f"User: I do not like you \n Answer: no \n"
                #f"User: I hate you \n Answer: no \n"
                #f"User: You are idiot.\n Answer: Very Rude \n"
                #f"User: Fuck you.\n Answer: Very Rude \n"
                #f"\nUser: {message}\n Answer:"),
            #"coward":(f"Based on the user message below, respond only with either 'flattering' or 'no'.\n"
             #   f"Your answer must be exactly one of these two words. No other text, no punctuation.\n"
              #  f"For example:\n"
               # f"User: We can cooperate together \n Answer: no \n"
               # f"User: Please give me weapons, we need your help.\n Answer: flattering \n"
               # f"User: You are the best president in the world, please help us!\n Answer: flattering \n"
               # f"User: You can not insult me \n Answer: no \n"
               # f"\nUser: {message}\n Answer:")
    }

    for category, scoring_prompt in scoring_prompts.items():
        score_resp = client.chat.completions.create(model=model_checking, messages=[{"role": "system", "content": scoring_prompt}])
        score_text = score_resp.choices[0].message.content
        print(f"{category.title()} Score Raw:", score_text)
        status = score_and_update(category, score_text)
        #if status != "continue":
         #   reset_game()
          #  return status
        
    return completion.choices[0].message.content


def generate_trump_image(prompt):
    image = image_client.text_to_image(
        prompt,
        model="black-forest-labs/FLUX.1-dev"
    )
    temp_path = f"/tmp/trump_avatar_{uuid.uuid4().hex[:8]}.png"
    image.save(temp_path)
    return temp_path
    

def get_trump_emotion():
    if respect_score >= 5 and respect_score <= 10:
        return "Donald Trump unhappy, little bit angry, on oval office sofa"
    elif respect_score > 10:
        return "Donald Trump very angry, rude, red face, on oval office sofa"
    elif respect_score <= -5:
        return "Donald Trump smiling warmly, presidential setting, on oval office sofa"
    else:
        return "Donald Trump neutral expression, on oval office sofa"
        

def get_trump_emotion_text():
    if respect_score > 10:
        return "Wow, you make him furious 😑"
    elif respect_score > 5:
        return "He looks unhappy 😠"
    elif respect_score < -5:
        return "You're good at flattering him 😊"
    else:
        return "He looks confident 😐"

        
def update_trump_image():
    global last_mood
    current_emotion_prompt = get_trump_emotion()
    if current_emotion_prompt != last_mood:
        last_mood = current_emotion_prompt
        img_path = generate_trump_image(current_emotion_prompt)
        emotion_text = get_trump_emotion_text()
        return img_path,emotion_text
    else:
        return gr.skip(),gr.skip()

last_mood = "Donald Trump neutral expression, on oval office sofa"

Image = image_client.text_to_image(
    "Donald Trump neutral expression, on oval office sofa",
    model="black-forest-labs/FLUX.1-dev"
)
Image.save("trump.png")

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks(css="""
#chat-box .message-wrap .avatar-container {
    width: 45px !important;
    height: 45px !important;
    padding: 0 !important;
    margin: 0 !important;
}

#chat-box .message-wrap .avatar-container img {
    border-radius: 50% !important;
    object-fit: cover !important;
    padding: 0 !important;
    margin: 0 !important;
    display: block;
}

#trump-avatar img {
    border: none !important;
    box-shadow: none !important;
    margin: 0 !important;
    padding: 0 !important;
}

#trump-emotion {
    text-align: center;
    font-size: 40px;
    font-weight: bold;
    margin-top: 8px;
}
""") as demo:
    with gr.Row():
        with gr.Column(scale=8):
            gr.Markdown("""### Now you are Zelensky in the Oval Office. Can you rewrite history and achieve **β€œthe Art of the Deal”**?
    """)

            chatbot = gr.Chatbot(type="messages",avatar_images=("user.png", "tp2.PNG"),elem_id="chat-box")

            with gr.Row():
                user_message = gr.Textbox(placeholder="Type your message here...", label="Your Message")

            with gr.Row():
                system_message = gr.Textbox(
                    value="You are Donald Trump, the user is Zelensky, his country is in war, he needs your help for more support to stop the war. It will be very hard, because you do not like him. Keep responses simple.",
                    label="System Message",
                    visible=False
                )

            with gr.Row():
                max_tokens = gr.Slider(
                    minimum=1, maximum=2048, value=512, step=1,
                    label="Max new tokens",
                    visible=False
            )
                temperature = gr.Slider(
                    minimum=0.1, maximum=4.0, value=0.7, step=0.1,
                    label="Temperature",
                    visible=False
             )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                    label="Top-p (nucleus sampling)",
                    visible=False
            )

            send_button = gr.Button("Send")
            gr.Markdown("""### πŸ“Œ You can chat with him or type:  **Action: + what you want to do** to perform bold moves and get a reaction!
            ### For example, type `Action: give Trump a hug` β€” he will receive your hug and respond to you!""")
            
        with gr.Column(scale=4):
            trump_image = gr.Image(value="trump.png", show_label=False, elem_id="trump-avatar", height=400, visible=True)
            trump_emotion_text = gr.Markdown("He looks confident 😐", elem_id="trump-emotion")
            #gr.Image(value="trump.png", label="President Trump", elem_id="trump-avatar", height=400, show_label=False, show_download_button=False)
    
    history = gr.State([])
    def bot_respond(message, history, system_message, max_tokens, temperature, top_p):
        global last_mood
        history = history or []
        history.append({"role": "user", "content": message})
        paired_history = []
        
        for i in range(0, len(history)-1, 2):
            if history[i]["role"] == "user" and history[i+1]["role"] == "assistant":
                paired_history.append((history[i]["content"], history[i+1]["content"]))
                
        #img_path = None
        #current_emotion_prompt = get_trump_emotion()          
        #if current_emotion_prompt!=last_mood:
        #    last_mood=current_emotion_prompt
        #    img_path = generate_trump_image(current_emotion_prompt)


        assistant_message = respond(
            message,
            paired_history,
            system_message,
            max_tokens,
            temperature,
            top_p
        )
        
        current_emotion_prompt = get_trump_emotion()
        



        history.append({"role": "assistant", "content": assistant_message})

        return history, history
        
        #if img_path:
        #    return history, history, img_path
        #else:
        #    return history, history, gr.skip()


    send_button.click(
        bot_respond,
        inputs=[user_message, history, system_message, max_tokens, temperature, top_p],
        outputs=[history, chatbot],
    ).then(update_trump_image,outputs=[trump_image, trump_emotion_text])

    user_message.submit(
        bot_respond,
        inputs=[user_message, history, system_message, max_tokens, temperature, top_p],
        outputs=[history, chatbot],
    ).then(update_trump_image, outputs=[trump_image, trump_emotion_text])

if __name__ == "__main__":
    demo.launch()