File size: 5,251 Bytes
575adcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e68e0
575adcc
 
 
 
 
 
 
a5e68e0
 
 
575adcc
 
 
 
 
 
 
 
 
30d91a5
575adcc
 
 
 
 
 
 
 
6177ad7
575adcc
6177ad7
 
 
575adcc
 
6177ad7
 
 
 
 
 
 
 
575adcc
6177ad7
 
163e67a
6177ad7
 
 
575adcc
 
 
48beee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575adcc
 
 
 
48beee2
575adcc
48beee2
575adcc
 
 
 
 
 
 
48beee2
 
575adcc
 
 
59d083c
 
 
575adcc
 
59d083c
 
 
 
 
 
 
 
575adcc
 
59d083c
 
 
575adcc
59d083c
575adcc
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import sumy

# using sumy library for summarization
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lex_rank import LexRankSummarizer
from sumy.summarizers.text_rank import TextRankSummarizer
from sumy.nlp.tokenizers import Tokenizer
import pandas as pd
import matplotlib.pyplot as plt
# import seaborn
from transformers import BartForConditionalGeneration, BartTokenizer
from transformers import T5ForConditionalGeneration, T5Tokenizer
from rouge import Rouge
import altair as at
import torch
from Text_analysis import *
from Metadata import *
from app_utils import *
from PIL import Image


HTML_BANNER = """
    <div style="background-color:lightgreen;padding:10px;border-radius:10px">
    <h1 style="color:white;text-align:center;">Summary app </h1>
    </div>
    """
def load_image(file):
    img = Image.open(file)
    return img


def main():
    menu=['Summarization','Text-Analysis','Meta-Data']
    choice=st.sidebar.selectbox("Menu",menu)


    if choice=='Summarization':
        stc.html(HTML_BANNER)
        st.image(load_image('Text-Summary.png'))
        st.subheader('summarization')
        raw_text=st.text_area("Enter the text you want to summarize")
        if st.button("Summarize"):
            with st.expander("Original Text"):
                st.write(raw_text)
            c1, c2 = st.columns(2)

            with c1:
               
                with st.expander("LexRank Summary"):
                    try:
                        summary = sumy_summarizer(raw_text)
                        document_len={"Original":len(raw_text),
                                  "Summary":len(summary)
                                   }
                        st.write(document_len)
                        st.write(summary)
                        st.info("Rouge Score")
                        score=evaluate_summary(summary,raw_text)
                        st.write(score.T)
                        st.subheader(" ")
                        score['metrics']=score.index
                        c=at.Chart(score).mark_bar().encode(
                        x='metrics',y='rouge-1'
                        )
                        st.altair_chart(c)
                    except:
                        st.warning('Insufficient data')

                    

            with c2:
                with st.expander("TextRank Summary"):
                    try:
                        text_summary=sumy_text_summarizer(raw_text)
                        document_len={"Original":len(raw_text),
                                  "Summary":len(summary)
                                   }
                        st.write(document_len)
                        st.write(text_summary)

                        st.info("Rouge Score")
                        score=evaluate_summary(text_summary,raw_text)
                        st.write(score.T)
                        st.subheader(" ")
                        score['metrics']=score.index
                        c=at.Chart(score).mark_bar().encode(
                            x='metrics',y='rouge-1'
                        )
                        st.altair_chart(c)
                        
                    except:
                          st.warning('Insufficient data')
                        

            st.subheader("Bart Sumary")
            with st.expander("Bart Summary"):
                try:
                    bart_summ = bart_summary(raw_text)
                    document_len={"Original":len(raw_text),
                                  "Summary":len(summary)
                                   }
                    st.write(document_len)
                    st.write(bart_summ)
                    st.info("Rouge Score")
                    score=evaluate_summary(bart_summ,raw_text)
                    st.write(score.T)
                    st.subheader(" ")
                    score['metrics']=score.index
                    c=at.Chart(score).mark_bar().encode(
                        x='metrics',y='rouge-1'
                    )
                    st.altair_chart(c)
                except:
                      st.warning('Insufficient data')

            st.subheader("T5 Sumarization")
            with st.expander("T5 Summary"):
                try:
                    T5_sum = T5_summary(raw_text)
                    document_len={"Original":len(raw_text),
                                  "Summary":len(summary)
                                   }
                    st.write(document_len)
                    st.write(T5_sum)
                    st.info("Rouge Score")
                    score=evaluate_summary(T5_sum,raw_text)
                    st.write(score.T)
                    st.subheader(" ")
                    score['metrics']=score.index
                    c=at.Chart(score).mark_bar().encode(
                        x='metrics',y='rouge-1'
                    )
                    st.altair_chart(c)
                except:
                    st.warning('Insufficient data')

                    

    elif choice=='Text-Analysis':
        text_analysis()
    else:
        metadata()


if __name__=='__main__':
    main()