File size: 11,158 Bytes
575adcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef1ac7
575adcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b93bb
575adcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef1ac7
575adcc
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import streamlit as st
import streamlit.components.v1 as stc
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from PIL import Image
import exifread  # Extracts Meta data of images
import os
from datetime import datetime

import mutagen # Extracts Meta data of Audio
from PIL.ExifTags import TAGS, GPSTAGS
import base64
import time
from PyPDF2 import PdfReader
timestr = time.strftime("%Y%m%d-%H%M%S")



details = """
Metadata is defined as the data providing information about one or more aspects of the data; it is used to summarize basic information about data which can make tracking and working with specific data easier
"""

HTML_BANNER = """
    <div style="background-color:violet;padding:10px;border-radius:10px">
    <h1 style="color:white;text-align:center;">MetaData Extractor App </h1>
    </div>
    """

def file_download(data):
    csv_file= data.to_csv()
    b64=base64.b64encode(csv_file.encode()).decode()
    new_filename="result_{}.csv".format(timestr)
    st.markdown('### πŸ—ƒοΈ Download csv file ')
    href=f'<a href="data:file/csv;base64,{b64}" download="{new_filename}"> Click Here! </a>'
    st.markdown(href, unsafe_allow_html=True)


    


def view_all_data():
	c.execute('SELECT * FROM filestable')
	data = c.fetchall()
	return data


def load_image(file):
    img = Image.open(file)
    return img

def get_readable_time(time):
    return datetime.fromtimestamp(time).strftime('%Y-%m-%d-%H:%M')


def get_exif(filename):
    exif = Image.open(filename).getexif()

    if exif is not None  and isinstance(exif, dict):
        for key, value in exif.items():
            name = TAGS.get(key, value)
            exif[name] = exif.pop(key)

        if 'GPSInfo' in exif:
            for key in exif['GPSInfo'].keys():
                name = GPSTAGS.get(key,key)
                exif['GPSInfo'][name] = exif['GPSInfo'].pop(key)
    return exif


def metadata():
    # st.title('Meta-Data Extractor App')
    stc.html(HTML_BANNER)
    menu=['Home','Image','Audio','Document_Files','Analytics']
    choice=st.sidebar.selectbox('Menu',menu)
    if choice=='Home':
        st.image(load_image('extraction_process.png'))
        st.write(details)
        col1, col2, col3 = st.columns(3)
        with col1:
            with st.expander("Get Image Metadata πŸ“·"):
                st.info("Image Metadata")
                st.markdown("πŸ“·")
                st.text("Upload JPEG,JPG,PNG Images")

        with col2:
            with st.expander("Get Audio Metadata πŸ”‰"):
                st.info("Audio Metadata")
                st.markdown("πŸ”‰")
                st.text("Upload Mp3,Ogg")

        with col3:
            with st.expander("Get Document Metadata πŸ“„πŸ“"):
                st.info("Document Files Metadata")
                st.markdown("πŸ“„πŸ“")
                st.text("Upload PDF,Docx")

    elif choice=='Image':
        st.subheader('Image MetaData Extractor')
        image_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
        if image_file is not None:
            with st.expander('File Stats'):
                file_details={'Filename':image_file.name,
                              'Filesize':image_file.size,
                              'Filetype':image_file.type}

                statinfo=os.stat(image_file.readable())
                statdetails={
                    'Accessed Time': get_readable_time(statinfo.st_atime),
                    'Creation Time':get_readable_time(statinfo.st_ctime),
                    'Modified Time':get_readable_time(statinfo.st_mtime)}
                full_details={
                    'Filename':image_file.name,
                     'Filesize':image_file.size,
                    'Filetype':image_file.type,
                    'Accessed Time': get_readable_time(statinfo.st_atime),
                    'Creation Time':get_readable_time(statinfo.st_ctime),
                    'Modified Time':get_readable_time(statinfo.st_mtime)
                            }
                # st.write(full_details)
                file_details_df = pd.DataFrame(
                    list(full_details.items()), columns=["Meta Tags", "Value"]
                )
                st.dataframe(file_details_df)
            c1, c2 = st.columns(2)
            with c1:
                with st.expander("View Image"):
                    img = load_image(image_file)
                    st.image(img,width=250)
            with c2:
                with st.expander("Default(JPEG)"):
                    st.info("Using PILLOW")
                    img = load_image(image_file)
                    img_details = {
                        "format": img.format,
                        "format_desc": img.format_description,
                        "filename": img.filename,
                        "size": img.size,
                        "height": img.height,
                        "width": img.width,
                        "info": img.info,
                    }
                    df_img_details = pd.DataFrame(
                        list(img_details.items()), columns=["Meta Tags", "Value"]
                    )
                    st.dataframe(df_img_details)

            c3,c4=st.columns(2)
            with c3:
                with st.expander('Using ExifRead Tool'):
                    meta_data=exifread.process_file(image_file)
                    # st.write(meta_data)
                    meta_data_df=pd.DataFrame(
                        list(meta_data.items()),columns=['Meta Data','Values'])
                    st.dataframe(meta_data_df)
            with c4:
                with st.expander('Image geo Coordinates'):
                    img_gps_details=get_exif(image_file)
                    latitude = img_gps_details.get('GPSLatitude')
                    longitude = img_gps_details.get('GPSLongitude')       
                    try:
                        gps_info = img_gps_details
                        lat=latitude
                        long=longitude
                    except:
                        gps_info = "None Found"
                    st.write(gps_info)
                    st.write(lat)
                    st.write(long)

            with st.expander('Download Results'):
                final_df=pd.concat([file_details_df,df_img_details,meta_data_df])
                st.dataframe(final_df)
                file_download(final_df)


    elif choice=='Audio':
        st.subheader('Audio MetaData Extractor')
        audio_file = st.file_uploader("Upload Audio", type=["mp3", "ogg"])

        if audio_file is not None:

            col1, col2 = st.columns(2)

            with col1:
                st.audio(audio_file.read())

            with col2:
                with st.expander("File Stats"):
                    file_details = {
                        "FileName": audio_file.name,
                        "FileSize": audio_file.size,
                        "FileType": audio_file.type,
                    }

                    st.write(file_details)

                    statinfo = os.stat(audio_file.readable())
                    stats_details = {
                        "Accessed_Time": get_readable_time(statinfo.st_atime),
                        "Creation_Time": get_readable_time(statinfo.st_ctime),
                        "Modified_Time": get_readable_time(statinfo.st_mtime),
                    }
                    st.write(stats_details)

                    file_details_combined = {
                        "FileName": audio_file.name,
                        "FileSize": audio_file.size,
                        "FileType": audio_file.type,
                        "Accessed_Time": get_readable_time(statinfo.st_atime),
                        "Creation_Time": get_readable_time(statinfo.st_ctime),
                        "Modified_Time": get_readable_time(statinfo.st_mtime),
                    }

                    df_file_details = pd.DataFrame(
                        list(file_details_combined.items()),
                        columns=["Meta Tags", "Value"],
                    )
                    st.dataframe(df_file_details)

                with st.expander('Metadata using Mutagen'):
                    meta_data=mutagen.File(audio_file)
                    meta_data_dict={str(key):str(value) for key,value in meta_data.items()}
                    meta_data_audio_df=pd.DataFrame(
                        list(meta_data_dict.items()),columns=['Tag','Values'])
                    st.dataframe(meta_data_audio_df)
            with st.expander("Download Results"):
                combined_df = pd.concat([df_file_details, meta_data_audio_df])
                st.dataframe(combined_df)
                file_download(combined_df)


    elif choice=='Document_Files':
        st.subheader('Document MetaData Extractor')
        text_file = st.file_uploader("Upload File", type=["PDF"])
        if text_file is not None:
            col1, col2 = st.columns([1, 2])

            with col1:
                with st.expander("File Stats"):
                    file_details = {
                        "FileName": text_file.name,
                        "FileSize": text_file.size,
                        "FileType": text_file.type,
                    }

                    st.write(file_details)
                    
                    statinfo = os.stat(text_file.readable())

                    stats_details = {
                        "Accessed_Time": get_readable_time(statinfo.st_atime),
                        "Creation_Time": get_readable_time(statinfo.st_ctime),
                        "Modified_Time": get_readable_time(statinfo.st_mtime),
                    }
                    st.write(stats_details)

                    # Combine All Details
                    file_details_combined = {
                        "FileName": text_file.name,
                        "FileSize": text_file.size,
                        "FileType": text_file.type,
                        "Accessed_Time": get_readable_time(statinfo.st_atime),
                        "Creation_Time": get_readable_time(statinfo.st_ctime),
                        "Modified_Time": get_readable_time(statinfo.st_mtime),
                    }

                    # Convert to DataFrame
                    df_file_details = pd.DataFrame(
                        list(file_details_combined.items()),
                        columns=["Meta Tags", "Value"],
                    )
            with col2:
                with st.expander("Metadata"):
                    pdf_file = PdfReader(text_file)
                    pdf_info = pdf_file.metadata
                    df_file_details_with_pdf = pd.DataFrame(
                        list(pdf_info.items()), columns=["Meta Tags", "Value"]
                    )

                    st.dataframe(df_file_details_with_pdf)

            with st.expander("Download Results"):
                pdf_combined_df = pd.concat([df_file_details, df_file_details_with_pdf])
                st.dataframe(pdf_combined_df)
                file_download(pdf_combined_df)