Spaces:
Sleeping
Sleeping
File size: 7,959 Bytes
a04b340 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import argparse
import logging
import os
import random
import socket
import numpy as np
import torch
logger = logging.getLogger()
def add_tokenizer_params(parser: argparse.ArgumentParser):
parser.add_argument(
"--do_lower_case",
action="store_true",
help="Whether to lower case the input text. True for uncased models, False for cased models.",
)
def add_encoder_params(parser: argparse.ArgumentParser):
"""
Common parameters to initialize an encoder-based model
"""
parser.add_argument(
"--pretrained_model_cfg",
default=None,
type=str,
help="config name for model initialization",
)
parser.add_argument(
"--encoder_model_type",
default=None,
type=str,
help="model type. One of [hf_bert, pytext_bert, fairseq_roberta]",
)
parser.add_argument(
"--pretrained_file",
type=str,
help="Some encoders need to be initialized from a file",
)
parser.add_argument(
"--model_file",
default=None,
type=str,
help="Saved bi-encoder checkpoint file to initialize the model",
)
parser.add_argument(
"--projection_dim",
default=0,
type=int,
help="Extra linear layer on top of standard bert/roberta encoder",
)
parser.add_argument(
"--sequence_length",
type=int,
default=512,
help="Max length of the encoder input sequence",
)
parser.add_argument(
"--do_fill_lower_case",
action="store_true",
help="Make all fills lower case. e.g. for cased models such as roberta"
)
parser.add_argument(
"--desegment_valid_fill",
action="store_true",
help="Desegment model fill output for validation"
)
def add_training_params(parser: argparse.ArgumentParser):
"""
Common parameters for training
"""
add_cuda_params(parser)
parser.add_argument(
"--train_file", default=None, type=str, help="File pattern for the train set"
)
parser.add_argument("--dev_file", default=None, type=str, help="")
parser.add_argument(
"--batch_size", default=2, type=int, help="Amount of questions per batch"
)
parser.add_argument(
"--dev_batch_size",
type=int,
default=4,
help="amount of questions per batch for dev set validation",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="random seed for initialization and dataset shuffling",
)
parser.add_argument(
"--adam_eps", default=1e-8, type=float, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--adam_betas",
default="(0.9, 0.999)",
type=str,
help="Betas for Adam optimizer.",
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument("--log_batch_step", default=100, type=int, help="")
parser.add_argument("--train_rolling_loss_step", default=100, type=int, help="")
parser.add_argument("--weight_decay", default=0.0, type=float, help="")
parser.add_argument(
"--learning_rate",
default=1e-5,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument(
"--warmup_steps", default=100, type=int, help="Linear warmup over warmup_steps."
)
parser.add_argument("--dropout", default=0.1, type=float, help="")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.",
)
def add_cuda_params(parser: argparse.ArgumentParser):
parser.add_argument(
"--no_cuda", action="store_true", help="Whether not to use CUDA when available"
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit float precision instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
def add_reader_preprocessing_params(parser: argparse.ArgumentParser):
parser.add_argument(
"--gold_passages_src",
type=str,
help="File with the original dataset passages (json format). Required for train set",
)
parser.add_argument(
"--gold_passages_src_dev",
type=str,
help="File with the original dataset passages (json format). Required for dev set",
)
parser.add_argument(
"--num_workers",
type=int,
default=16,
help="number of parallel processes to binarize reader data",
)
def get_encoder_checkpoint_params_names():
return [
"do_lower_case",
"pretrained_model_cfg",
"encoder_model_type",
"pretrained_file",
"projection_dim",
"sequence_length",
]
def get_encoder_params_state(args):
"""
Selects the param values to be saved in a checkpoint, so that a trained model faile can be used for downstream
tasks without the need to specify these parameter again
:return: Dict of params to memorize in a checkpoint
"""
params_to_save = get_encoder_checkpoint_params_names()
r = {}
for param in params_to_save:
r[param] = getattr(args, param)
return r
def set_encoder_params_from_state(state, args):
if not state:
return
params_to_save = get_encoder_checkpoint_params_names()
override_params = [
(param, state[param])
for param in params_to_save
if param in state and state[param]
]
for param, value in override_params:
if hasattr(args, param):
logger.warning(
"Overriding args parameter value from checkpoint state. Param = %s, value = %s",
param,
value,
)
setattr(args, param, value)
return args
def set_seed(args):
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(seed)
def setup_args_gpu(args):
"""
Setup arguments CUDA, GPU & distributed training
"""
if args.local_rank == -1 or args.no_cuda: # single-node multi-gpu (or cpu) mode
device = torch.device(
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
)
args.n_gpu = torch.cuda.device_count()
else: # distributed mode
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
ws = os.environ.get("WORLD_SIZE")
args.distributed_world_size = int(ws) if ws else 1
logger.info(
"Initialized host %s as d.rank %d on device=%s, n_gpu=%d, world size=%d",
socket.gethostname(),
args.local_rank,
device,
args.n_gpu,
args.distributed_world_size,
)
logger.info("16-bits training: %s ", args.fp16)
def print_args(args):
logger.info(" **************** CONFIGURATION **************** ")
for key, val in sorted(vars(args).items()):
keystr = "{}".format(key) + (" " * (30 - len(key)))
logger.info("%s --> %s", keystr, val)
logger.info(" **************** CONFIGURATION **************** ") |