File size: 2,965 Bytes
e669abf
 
f387393
1abbe27
 
e669abf
 
0e20e10
1b8c45e
e669abf
 
 
 
f057421
e669abf
9cc7c4e
 
e669abf
9cc7c4e
 
 
 
 
 
2888c51
9cc7c4e
7f48a24
 
68fbe9e
 
 
 
 
 
7f48a24
 
e669abf
579be1d
e669abf
 
 
518ac36
4a73816
3a53d21
7f48a24
c35e70a
518ac36
b335787
518ac36
e669abf
42c5082
 
e669abf
7f48a24
e669abf
 
cde5ee9
e669abf
 
 
 
 
42c5082
e669abf
 
cde5ee9
7de9116
e669abf
cde5ee9
 
 
 
e669abf
 
42c5082
9cc7c4e
7f48a24
f1c8fb6
e669abf
 
 
7f48a24
f1c8fb6
e669abf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import matplotlib.pyplot as plt

device = "cuda:0" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")  
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)

# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model, 
                             tokenizer=tokenizer, return_all_scores=True)

explainer = shap.Explainer(pred)

##
classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")

def med_score(x):
    label = x['label']
    score_1 = x['score']
    return score_1

##

def adr_predict(x):
    encoded_input = tokenizer(x, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = tf.nn.softmax(scores)
   
    shap_values = explainer([str(x).lower()])
    local_plot = shap.plots.text(shap_values[0], display=False)

    med = med_score(classifier(x+str(", There is a medication."))[0])
   
    return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}


def main(prob1):
    text = str(prob1).lower()
    obj = adr_predict(text)
    return obj[0],obj[1],obj[2]

title = "Welcome to **ADR Detector** 🪐"
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
    submit_btn = gr.Button("Analyze")

    with gr.Row():
        local_plot = gr.HTML(label = 'Shap:')

        with gr.Column(visible=True) as output_col:
            label = gr.Label(label = "Predicted Label")
            med = gr.Label(label = "Contains Medication")
        
    submit_btn.click(
        main,
        [prob1],
        [label
         ,local_plot, med
        ], api_name="adr"
    )

    gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
    gr.Examples([["I have severe pain."],["I have minor pain."]], [prob1], [label,local_plot, med
                                                                          ], main, cache_examples=True)
    
demo.launch()