UNIST-Eunchan commited on
Commit
ccb93ff
β€’
1 Parent(s): d17a7aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -9,12 +9,14 @@ from sentence_transformers import SentenceTransformer
9
 
10
  sentence_transformer_model = SentenceTransformer("sentence-transformers/all-roberta-large-v1")
11
 
 
12
  nltk.download('punkt')
13
  with open('testbook.json') as f:
14
  test_book = json.load(f)
15
 
16
  tokenizer = AutoTokenizer.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
17
 
 
18
  def load_model(model_name):
19
  model = AutoModelForSeq2SeqLM.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
20
  return model
@@ -38,6 +40,7 @@ def infer(input_ids, max_length, temperature, top_k, top_p):
38
  return output_sequences
39
 
40
 
 
41
  def chunking(book_text):
42
  sentences = sent_tokenize(book_text)
43
  segments = []
@@ -82,14 +85,14 @@ def chunking(book_text):
82
 
83
  '''
84
  '''
85
-
86
  _book = test_book[book_index]['book']
87
 
88
  #prompts
89
  st.title("Book Summarization πŸ“š")
90
  st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
91
 
92
- book_index = st.sidebar.slider("Select Book Example", value = 0,min_value = 0, max_value=4)
93
  sent = st.text_area("Text", _book[:512], height = 550)
94
  max_length = st.sidebar.slider("Max Length", value = 512,min_value = 10, max_value=1024)
95
  temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
 
9
 
10
  sentence_transformer_model = SentenceTransformer("sentence-transformers/all-roberta-large-v1")
11
 
12
+
13
  nltk.download('punkt')
14
  with open('testbook.json') as f:
15
  test_book = json.load(f)
16
 
17
  tokenizer = AutoTokenizer.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
18
 
19
+
20
  def load_model(model_name):
21
  model = AutoModelForSeq2SeqLM.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
22
  return model
 
40
  return output_sequences
41
 
42
 
43
+ @st.cache_data
44
  def chunking(book_text):
45
  sentences = sent_tokenize(book_text)
46
  segments = []
 
85
 
86
  '''
87
  '''
88
+ book_index = 0
89
  _book = test_book[book_index]['book']
90
 
91
  #prompts
92
  st.title("Book Summarization πŸ“š")
93
  st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
94
 
95
+ #book_index = st.sidebar.slider("Select Book Example", value = 0,min_value = 0, max_value=4)
96
  sent = st.text_area("Text", _book[:512], height = 550)
97
  max_length = st.sidebar.slider("Max Length", value = 512,min_value = 10, max_value=1024)
98
  temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)