UNIST-Eunchan's picture
Update app.py
950ede6
raw
history blame
4.98 kB
import transformers
import streamlit as st
import nltk
from nltk import sent_tokenize
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import json
import numpy as np
from sentence_transformers import SentenceTransformer
nltk.download('punkt')
with open('testbook.json') as f:
test_book = json.load(f)
tokenizer = AutoTokenizer.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
@st.cache_resource
def load_model(model_name):
nltk.download('punkt')
sentence_transformer_model = SentenceTransformer("sentence-transformers/all-roberta-large-v1")
model = AutoModelForSeq2SeqLM.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
return sentence_transformer_model, model
sentence_transformer_model, model = load_model("UNIST-Eunchan/bart-dnc-booksum")
def infer(input_ids, max_length, temperature, top_k, top_p):
output_sequences = model.generate(
input_ids=input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True,
num_return_sequences=1,
num_beams=4,
no_repeat_ngram_size=2
)
return output_sequences
def cos_similarity(v1, v2):
dot_product = np.dot(v1, v2)
l2_norm = (np.sqrt(sum(np.square(v1))) * np.sqrt(sum(np.square(v2))))
similarity = dot_product / l2_norm
return similarity
@st.cache_data
def chunking(book_text):
sentences = sent_tokenize(book_text)
segments = []
token_lens = []
for sent_i_th in sentences:
token_lens.append(len(tokenizer.tokenize(sent_i_th)))
#sentences, token_lens
current_segment = ""
total_token_lens = 0
for i in range(len(sentences)):
if total_token_lens < 512:
total_token_lens += token_lens[i]
current_segment += (sentences[i] + " ")
elif total_token_lens > 768:
segments.append(current_segment)
current_segment = sentences[i]
total_token_lens = token_lens[i]
else:
#make next_pseudo_segment
next_pseudo_segment = ""
next_token_len = 0
for t in range(10):
if (i+t < len(sentences)) and (next_token_len + token_lens[i+t] < 512):
next_token_len += token_lens[i+t]
next_pseudo_segment += sentences[i+t]
embs = sentence_transformer_model.encode([current_segment, next_pseudo_segment, sentences[i]]) # current, next, sent
if cos_similarity(embs[1],embs[2]) > cos_similarity(embs[0],embs[2]):
segments.append(current_segment)
current_segment = sentences[i]
total_token_lens = token_lens[i]
else:
total_token_lens += token_lens[i]
current_segment += (sentences[i] + " ")
return segments
book_index = 0
_book = test_book[book_index]['book']
#prompts
st.title("Book Summarization πŸ“š")
st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
#book_index = st.sidebar.slider("Select Book Example", value = 0,min_value = 0, max_value=4)
sent = st.text_area("Text", _book[:512], height = 550)
max_length = st.sidebar.slider("Max Length", value = 512,min_value = 10, max_value=1024)
temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.92)
chunked_segments = chunking(_book)
def generate_output(test_samples):
inputs = tokenizer(
test_samples,
padding=max_length,
truncation=True,
max_length=1024,
return_tensors="pt",
)
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
outputs = model.generate(input_ids,
max_length = 256,
min_length=32,
top_p = 0.92,
num_beams=5,
no_repeat_ngram_size=2,
attention_mask=attention_mask)
output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs, output_str
chunked_segments = chunking(test_book[0]['book'])
for segment in range(len(chunked_segments)):
summaries = generate_output(segment)
st.write(summaries[-1])