File size: 39,337 Bytes
6d2b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92df087
6d2b558
 
92df087
 
 
 
6d2b558
92df087
46b302d
 
 
 
 
 
 
 
 
92df087
46b302d
 
 
92df087
 
 
 
 
 
 
 
 
 
 
46b302d
 
 
 
 
 
 
 
 
 
 
6d2b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

import math
import pandas as pd
import numpy as np
import json
import requests
import datetime
from datetime import timedelta
from PIL import Image
# alternative to PIL
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import os
import matplotlib.dates as mdates
import seaborn as sns
from IPython.display import Image as image_display
path = os.getcwd()
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from IPython.display import display
from dateutil import parser
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import streamlit as st


if 'form_submitted' not in st.session_state:
    st.session_state['form_submitted'] = False


st.title('Magnetic Correlations Dashboard')

st.set_option('deprecation.showPyplotGlobalUse', False)


from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
)


def plot_treemap(df, column, top_n=32):
        # Get the value counts and the top N labels
        value_counts = df[column].value_counts()
        top_labels = value_counts.iloc[:top_n].index
        
        # Use np.where to replace all values not in the top N with 'Other'
        revised_column = f'{column}_revised'
        df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')

        # Get the value counts including the 'Other' category
        sizes = df[revised_column].value_counts().values
        labels = df[revised_column].value_counts().index

        # Get a gradient of colors
        # colors = list(mcolors.TABLEAU_COLORS.values())

        n_colors = len(sizes)
        colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]


        # Get % of each category
        percents = sizes / sizes.sum()

        # Prepare labels with percentages
        labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]

        fig, ax = plt.subplots(figsize=(20, 12))

        # Plot the treemap
        squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})

        ax = plt.gca()
        # Iterate over text elements and rectangles (patches) in the axes for color adjustment
        for text, rect in zip(ax.texts, ax.patches):
            background_color = rect.get_facecolor()
            r, g, b, _ = mcolors.to_rgba(background_color)
            brightness = np.average([r, g, b])
            text.set_color('white' if brightness < 0.5 else 'black')


def plot_hist(df, column, bins=10, kde=True):
        fig, ax = plt.subplots(figsize=(12, 6))
        sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
        # set the ticks and frame in orange
        ax.spines['bottom'].set_color('orange')
        ax.spines['top'].set_color('orange')
        ax.spines['right'].set_color('orange')
        ax.spines['left'].set_color('orange')
        ax.xaxis.label.set_color('orange')
        ax.yaxis.label.set_color('orange')
        ax.tick_params(axis='x', colors='orange')
        ax.tick_params(axis='y', colors='orange')
        ax.title.set_color('orange')

        # Set transparent background
        fig.patch.set_alpha(0)
        ax.patch.set_alpha(0)
        return fig




def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
    import matplotlib.cm as cm
    # Sort the dataframe by the date column
    df = df.sort_values(by=x_column)

    # Calculate rolling mean for each y_column
    if rolling_mean_value:
        df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()

    # Create the plot
    fig, ax = plt.subplots(figsize=figsize)

    colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))

    # Plot each y_column as a separate line with a different color
    for i, y_column in enumerate(y_columns):
        df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)

    # Rotate x-axis labels
    ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')

    # Format x_column as date if it is
    if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
        df[x_column] = pd.to_datetime(df[x_column]).dt.date

    # Set title, labels, and legend
    ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
    ax.set_xlabel(x_column, color=color)
    ax.set_ylabel(', '.join(y_columns), color=color)
    ax.spines['bottom'].set_color('orange')
    ax.spines['top'].set_color('orange')
    ax.spines['right'].set_color('orange')
    ax.spines['left'].set_color('orange')
    ax.xaxis.label.set_color('orange')
    ax.yaxis.label.set_color('orange')
    ax.tick_params(axis='x', colors='orange')
    ax.tick_params(axis='y', colors='orange')
    ax.title.set_color('orange')

    ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    # Remove background
    fig.patch.set_alpha(0)
    ax.patch.set_alpha(0)

    return fig

def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
    fig, ax = plt.subplots(figsize=figsize)

    sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)

    ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
    ax.set_xlabel(x_column, color=color)
    ax.set_ylabel(y_column, color=color)

    ax.tick_params(axis='x', colors=color)
    ax.tick_params(axis='y', colors=color)

    plt.xticks(rotation=rotation)

    # Remove background
    fig.patch.set_alpha(0)
    ax.patch.set_alpha(0)
    ax.spines['bottom'].set_color('orange')
    ax.spines['top'].set_color('orange')
    ax.spines['right'].set_color('orange')
    ax.spines['left'].set_color('orange')
    ax.xaxis.label.set_color('orange')
    ax.yaxis.label.set_color('orange')
    ax.tick_params(axis='x', colors='orange')
    ax.tick_params(axis='y', colors='orange')
    ax.title.set_color('orange')
    ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    return fig

def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
    fig, ax = plt.subplots(figsize=figsize)

    width = 0.8 / len(x_columns)  # the width of the bars
    x = np.arange(len(df))  # the label locations

    for i, x_column in enumerate(x_columns):
        sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
        x += width  # add the width of the bar to the x position for the next bar

    ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
    ax.set_xlabel('Groups', color='orange')
    ax.set_ylabel(y_column, color='orange')

    ax.set_xticks(x - width * len(x_columns) / 2)
    ax.set_xticklabels(df.index)

    ax.tick_params(axis='x', colors='orange')
    ax.tick_params(axis='y', colors='orange')

    # Remove background
    fig.patch.set_alpha(0)
    ax.patch.set_alpha(0)
    ax.spines['bottom'].set_color('orange')
    ax.spines['top'].set_color('orange')
    ax.spines['right'].set_color('orange')
    ax.spines['left'].set_color('orange')
    ax.xaxis.label.set_color('orange')
    ax.yaxis.label.set_color('orange')
    ax.title.set_color('orange')
    ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    return fig


def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
    """
    Adds a UI on top of a dataframe to let viewers filter columns

    Args:
        df (pd.DataFrame): Original dataframe

    Returns:
        pd.DataFrame: Filtered dataframe
    """

    title_font = "Arial"
    body_font = "Arial"
    title_size = 32
    colors = ["red", "green", "blue"]
    interpretation = False
    extract_docx = False
    title = "My Chart"
    regex = ".*"
    img_path = 'default_image.png'


    #try:
    #    modify = st.checkbox("Add filters on raw data")
    #except:
    #    try:
    #        modify = st.checkbox("Add filters on processed data")
    #    except:
    #        try:
    #            modify = st.checkbox("Add filters on parsed data")
    #        except:
    #            pass

    #if not modify:
    #    return df

    df_ = df.copy()
    # Try to convert datetimes into a standard format (datetime, no timezone)

#modification_container = st.container()

#with modification_container:
    to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)

    date_column = None
    filtered_columns = []

    for column in to_filter_columns:
        left, right = st.columns((1, 20))
        # Treat columns with < 200 unique values as categorical if not date or numeric
        if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
            user_cat_input = right.multiselect(
                f"Values for {column}",
                df_[column].value_counts().index.tolist(),
                default=list(df_[column].value_counts().index)
            )
            df_ = df_[df_[column].isin(user_cat_input)]
            filtered_columns.append(column)

            with st.status(f"Category Distribution: {column}", expanded=False) as stat:
                st.pyplot(plot_treemap(df_, column))

        elif is_numeric_dtype(df_[column]):
            _min = float(df_[column].min())
            _max = float(df_[column].max())
            step = (_max - _min) / 100
            user_num_input = right.slider(
                f"Values for {column}",
                min_value=_min,
                max_value=_max,
                value=(_min, _max),
                step=step,
            )
            df_ = df_[df_[column].between(*user_num_input)]
            filtered_columns.append(column)

            # Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
            #      colors, interpretation, extract_docx, img_path)

            with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
                st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))

        elif is_object_dtype(df_[column]):
            try:
                df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
            except Exception:
                try:
                    df_[column] = df_[column].apply(parser.parse)
                except Exception:
                    pass

            if is_datetime64_any_dtype(df_[column]):
                df_[column] = df_[column].dt.tz_localize(None)
                min_date = df_[column].min().date()
                max_date = df_[column].max().date()
                user_date_input = right.date_input(
                    f"Values for {column}",
                    value=(min_date, max_date),
                    min_value=min_date,
                    max_value=max_date,
                )
               

                if len(user_date_input) == 2:
                    user_date_input = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input

                    # Determine the most appropriate time unit for plot
                    time_units = {
                        'year': df_[column].dt.year,
                        'month': df_[column].dt.to_period('M'),
                        'day': df_[column].dt.date
                    }
                    unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
                    closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))

                    # Group by the most appropriate time unit and count occurrences
                    grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
                    grouped.columns = [column, 'count']

                    # Create a complete date range
                    if closest_to_36 == 'year':
                        date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
                    elif closest_to_36 == 'month':
                        date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
                    else:  # day
                        date_range = pd.date_range(start=start_date, end=end_date, freq='D')

                    # Create a DataFrame with the complete date range
                    complete_range = pd.DataFrame({column: date_range})

                    # Convert the date column to the appropriate format based on closest_to_36
                    if closest_to_36 == 'year':
                        complete_range[column] = complete_range[column].dt.year
                    elif closest_to_36 == 'month':
                        complete_range[column] = complete_range[column].dt.to_period('M')

                    # Merge the complete range with the grouped data
                    final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)

                    with st.status(f"Date Distributions: {column}", expanded=False) as stat:
                        try:
                            st.pyplot(plot_bar(final_data, column, 'count'))
                        except Exception as e:
                            st.error(f"Error plotting bar chart: {e}")

                    df_ = df_.loc[df_[column].between(start_date, end_date)]

                date_column = column

                if date_column and filtered_columns:
                    numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
                    if numeric_columns:
                        fig = plot_line(df_, date_column, numeric_columns)
                        #st.pyplot(fig)
                    # now to deal with categorical columns
                    categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
                    if categorical_columns:
                        fig2 = plot_bar(df_, date_column, categorical_columns[0])
                        #st.pyplot(fig2)
                    with st.status(f"Date Distribution: {column}", expanded=False) as stat:
                        try:
                            st.pyplot(fig)
                        except Exception as e:
                            st.error(f"Error plotting line chart: {e}")
                            pass
                        try:
                            st.pyplot(fig2)
                        except Exception as e:
                            st.error(f"Error plotting bar chart: {e}")


        else:
            user_text_input = right.text_input(
                f"Substring or regex in {column}",
            )
            if user_text_input:
                df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
    # write len of df after filtering with % of original
    st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
    return df_


def get_stations():
    base_url = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetCapabilities&format=json' 
    response = requests.get(base_url)
    data = response.json()
    dataframe_stations = pd.DataFrame.from_dict(data['ObservatoryList'])
    return dataframe_stations

def get_haversine_distance(lat1, lon1, lat2, lon2):
    R = 6371
    dlat = math.radians(lat2 - lat1)
    dlon = math.radians(lon2 - lon1)
    a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
    d = R * c
    return d

def compare_stations(test_lat_lon, data_table, distance=1000, closest=False):
    table_updated = pd.DataFrame()
    distances = dict()
    for lat,lon,names in data_table[['Latitude', 'Longitude', 'Name']].values:
        harv_distance = get_haversine_distance(test_lat_lon[0], test_lat_lon[1], lat, lon)
        if harv_distance < distance:
            #print(f"Station {names} is at {round(harv_distance,2)} km from the test point")
            table_updated = pd.concat([table_updated, data_table[data_table['Name'] == names]])
            distances[names] = harv_distance
    if closest:
        closest_station = min(distances, key=distances.get)
        #print(f"The closest station is {closest_station} at {round(distances[closest_station],2)} km")
        table_updated = data_table[data_table['Name'] == closest_station]
        table_updated['Distance'] = distances[closest_station]
    return table_updated

def get_data(IagaCode, start_date, end_date):
    try:
        start_date_ = datetime.datetime.strptime(start_date, '%Y-%m-%d')
    except ValueError as e:
        print(f"Error: {e}")
        start_date_ = pd.to_datetime(start_date)
    try:
        end_date_ = datetime.datetime.strptime(end_date, '%Y-%m-%d')
    except ValueError as e:
        print(f"Error: {e}")
        end_date_ = pd.to_datetime(end_date)

    duration = end_date_ - start_date_
    # Define the parameters for the request
    params = {
        'Request': 'GetData',
        'format': 'PNG',
        'testObsys': '0',
        'observatoryIagaCode': IagaCode,
        'samplesPerDay': 'minute',
        'publicationState': 'Best available',
        'dataStartDate': start_date,
        # make substraction
        'dataDuration': duration.days,
        'traceList': '1234',
        'colourTraces': 'true',
        'pictureSize': 'Automatic',
        'dataScale': 'Automatic',
        'pdfSize': '21,29.7',
    }

    base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json'
    #base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png'

    for base_url in [base_url_json]:#, base_url_img]:
        response = requests.get(base_url, params=params)
        if response.status_code == 200:
            content_type = response.headers.get('Content-Type')
            if 'image' in content_type:
                # f"custom_plot_{new_dataset.iloc[0]['IagaCode']}_{str_date.replace(':', '_')}.png"
                # output_image_path = "plot_image.png" 
                # with open(output_image_path, 'wb') as file:
                #     file.write(response.content)
                # print(f"Image successfully saved as {output_image_path}")
                
                # # Display the image
                # img = mpimg.imread(output_image_path)
                # plt.imshow(img)
                # plt.axis('off')  # Hide axes
                # plt.show()
                # img_answer = Image.open(output_image_path)
                img_answer = None
            else:
                print(f"Unexpected content type: {content_type}")
                #print("Response content:")
                #print(response.content.decode('utf-8'))  # Attempt to print response as text
                # return json
                answer = response.json()
        else:
            print(f"Failed to retrieve data. HTTP Status code: {response.status_code}")
            print("Response content:")
            print(response.content.decode('utf-8'))
    return answer#, img_answer


# def get_data(IagaCode, start_date, end_date):
#     # Convert dates to datetime
#     try:
#         start_date_ = pd.to_datetime(start_date)
#         end_date_ = pd.to_datetime(end_date)
#     except ValueError as e:
#         print(f"Error: {e}")
#         return None, None

#     duration = (end_date_ - start_date_).days

#     # Define the parameters for the request
#     params = {
#         'Request': 'GetData',
#         'format': 'json',
#         'testObsys': '0',
#         'observatoryIagaCode': IagaCode,
#         'samplesPerDay': 'minute',
#         'publicationState': 'Best available',
#         'dataStartDate': start_date_.strftime('%Y-%m-%d'),
#         'dataDuration': duration,
#         'traceList': '1234',
#         'colourTraces': 'true',
#         'pictureSize': 'Automatic',
#         'dataScale': 'Automatic',
#         'pdfSize': '21,29.7',
#     }

#     base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json'
#     base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png'

#     try:
#         # Request JSON data
#         response_json = requests.get(base_url_json, params=params)
#         response_json.raise_for_status()  # Raises an error for bad status codes
#         data = response_json.json()

#         # Request Image
#         params['format'] = 'png'
#         response_img = requests.get(base_url_img, params=params)
#         response_img.raise_for_status()

#         # Save and display image if response is successful
#         if 'image' in response_img.headers.get('Content-Type'):
#             output_image_path = "plot_image.png"
#             with open(output_image_path, 'wb') as file:
#                 file.write(response_img.content)
#             print(f"Image successfully saved as {output_image_path}")

#             img = mpimg.imread(output_image_path)
#             plt.imshow(img)
#             plt.axis('off')
#             plt.show()
#             img_answer = Image.open(output_image_path)
#         else:
#             img_answer = None

#         return data, img_answer

#     except requests.RequestException as e:
#         print(f"Request failed: {e}")
#         return None, None
#     except ValueError as e:
#         print(f"JSON decode error: {e}")
#         return None, None

def clean_uap_data(dataset, lat, lon, date):
    # Assuming 'nuforc' is already defined
    processed = dataset[dataset[[lat, lon, date]].notnull().all(axis=1)]
    # Converting 'Lat' and 'Long' columns to floats, handling errors
    processed[lat] = pd.to_numeric(processed[lat], errors='coerce')
    processed[lon] = pd.to_numeric(processed[lon], errors='coerce')

    # if processed[date].min() < pd.to_datetime('1677-09-22'):
    #     processed.loc[processed[date] < pd.to_datetime('1677-09-22'), 'corrected_date'] = pd.to_datetime('1677-09-22 00:00:00')

    procesed = processed[processed[date] >= '1677-09-22']

    # convert date to str
    #processed[date] = processed[date].astype(str)
    # Dropping rows where 'Lat' or 'Long' conversion failed (i.e., became NaN)
    processed = processed.dropna(subset=[lat, lon])
    return processed


def plot_overlapped_timeseries(data_list, event_times, window_hours=12, save_path=None):
    fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
    fig.patch.set_alpha(0)  # Make figure background transparent

    components = ['X', 'Y', 'Z', 'S']
    colors = ['red', 'green', 'blue', 'black']

    for i, component in enumerate(components):
        axs[i].patch.set_alpha(0)  # Make subplot background transparent
        axs[i].set_ylabel(component, color='orange')
        axs[i].grid(True, color='orange', alpha=0.3)
        
        for spine in axs[i].spines.values():
            spine.set_color('orange')
        
        axs[i].tick_params(axis='both', colors='orange')  # Change tick color
        axs[i].set_title(f'{component}', color='orange')
        axs[i].set_xlabel('Time Difference from Event (hours)', color='orange')

        for j, (df, event_time) in enumerate(zip(data_list, event_times)):
            # Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC
            df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
            
            # Convert event_time to UTC if it has timezone info, otherwise assume it's UTC
            event_time = pd.to_datetime(event_time).tz_localize(None)
            
            # Calculate time difference from event
            df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600  # Convert to hours
            
            # Filter data within the specified window
            df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]

            # normalize component data
            df_window[component] = (df_window[component] - df_window[component].mean()) / df_window[component].std()
            
            axs[i].plot(df_window['time_diff'], df_window[component], color=colors[i], alpha=0.7, label=f'Event {j+1}', linewidth=1)
        
        axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
        axs[i].set_xlim(-window_hours, window_hours)
        #axs[i].legend(loc='upper left', bbox_to_anchor=(1, 1))

    axs[-1].set_xlabel('Hours from Event', color='orange')
    fig.suptitle('Overlapped Time Series of Components', fontsize=16, color='orange')
    
    plt.tight_layout()
    plt.subplots_adjust(top=0.95, right=0.85)

    if save_path:
        fig.savefig(save_path, transparent=True, bbox_inches='tight')
        plt.close(fig)
        return save_path
    else:
        return fig
    
def plot_average_timeseries(data_list, event_times, window_hours=12, save_path=None):
    fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
    fig.patch.set_alpha(0)  # Make figure background transparent

    components = ['X', 'Y', 'Z', 'S']
    colors = ['red', 'green', 'blue', 'black']

    for i, component in enumerate(components):
        axs[i].patch.set_alpha(0)
        axs[i].set_ylabel(component, color='orange')
        axs[i].grid(True, color='orange', alpha=0.3)

        for spine in axs[i].spines.values():
                spine.set_color('orange')
        
        axs[i].tick_params(axis='both', colors='orange')

        all_data = []
        time_diffs = []

        for j, (df, event_time) in enumerate(zip(data_list, event_times)):
            # Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC
            df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)

            # Convert event_time to UTC if it has timezone info, otherwise assume it's UTC
            event_time = pd.to_datetime(event_time).tz_localize(None)

            # Calculate time difference from event
            df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600  # Convert to hours

            # Filter data within the specified window
            df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]

            # Normalize component data
            df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std()

            all_data.append(df_window[component].values)
            time_diffs.append(df_window['time_diff'].values)

        # Calculate average and standard deviation
        try:
            avg_data = np.mean(all_data, axis=0)
        except:
            avg_data = np.zeros_like(all_data[0])
        try:
            std_data = np.std(all_data, axis=0)
        except:
            std_data = np.zeros_like(avg_data)

        axs[-1].set_xlabel('Hours from Event', color='orange')
        fig.suptitle('Average Time Series of Components', fontsize=16, color='orange')

        # Plot average line
        axs[i].plot(time_diffs[0], avg_data, color=colors[i], label='Average')

        # Plot standard deviation as shaded region
        try:
            axs[i].fill_between(time_diffs[0], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2)
        except:
            pass

        axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
        axs[i].set_xlim(-window_hours, window_hours)
        # orange frame, orange label legend
        axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    plt.tight_layout()
    plt.subplots_adjust(top=0.95, right=0.85)

    if save_path:
        fig.savefig(save_path, transparent=True, bbox_inches='tight')
        plt.close(fig)
        return save_path
    else:
        return fig
    
def align_series(reference, series):
    reference = reference.flatten()
    series = series.flatten()
    _, path = fastdtw(reference, series, dist=euclidean)
    aligned = np.zeros(len(reference))
    for ref_idx, series_idx in path:
        aligned[ref_idx] = series[series_idx]
    return aligned

def plot_average_timeseries_with_dtw(data_list, event_times, window_hours=12, save_path=None):
    fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
    fig.patch.set_alpha(0)  # Make figure background transparent

    components = ['X', 'Y', 'Z', 'S']
    colors = ['red', 'green', 'blue', 'black']
    fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange')


    for i, component in enumerate(components):
        axs[i].patch.set_alpha(0)
        axs[i].set_ylabel(component, color='orange', rotation=90)
        axs[i].grid(True, color='orange', alpha=0.3)
        
        for spine in axs[i].spines.values():
            spine.set_color('orange')
        
        axs[i].tick_params(axis='both', colors='orange')

        all_aligned_data = []
        reference_df = None

        for j, (df, event_time) in enumerate(zip(data_list, event_times)):
            df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
            event_time = pd.to_datetime(event_time).tz_localize(None)
            df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600
            df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
            df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std()
            
            if reference_df is None:
                reference_df = df_window
                all_aligned_data.append(reference_df[component].values)
            else:
                try:
                    aligned_series = align_series(reference_df[component].values, df_window[component].values)
                    all_aligned_data.append(aligned_series)
                except:
                    pass

        # Calculate average and standard deviation of aligned data
        all_aligned_data = np.array(all_aligned_data)
        avg_data = np.mean(all_aligned_data, axis=0)

        # round float to avoid sqrt errors
        def calculate_std(data):
            if data is not None and len(data) > 0:
                data = np.array(data)
                std_data = np.std(data)
                return std_data
            else:
                return "Data is empty or not a list"
            
        std_data = calculate_std(all_aligned_data)

        # Plot average line
        axs[i].plot(reference_df['time_diff'], avg_data, color=colors[i], label='Average')

        # Plot standard deviation as shaded region
        try:
            axs[i].fill_between(reference_df['time_diff'], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2)
        except TypeError as e:
            #print(f"Error: {e}")
            pass
            

        axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
        axs[i].set_xlim(-window_hours, window_hours)
        axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange')


    axs[-1].set_xlabel('Hours from Event', color='orange')
    fig.suptitle('Average Time Series of Components (FastDTW Aligned)', fontsize=16, color='orange')

    plt.tight_layout()
    plt.subplots_adjust(top=0.85, right=0.85, left=0.1)

    if save_path:
        fig.savefig(save_path, transparent=True, bbox_inches='tight')
        plt.close(fig)
        return save_path
    else:
        return fig

def plot_data_custom(df, date, save_path=None, subtitle=None):
    df['datetime'] = pd.to_datetime(df['datetime'])
    event = pd.to_datetime(date)
    window = timedelta(hours=12)
    x_min = event - window
    x_max = event + window

    fig, axs = plt.subplots(4, 1, figsize=(12, 12), sharex=True)
    fig.patch.set_alpha(0)  # Make figure background transparent

    components = ['X', 'Y', 'Z', 'S']
    colors = ['red', 'green', 'blue', 'black']

    fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange')

    # if df[component].isnull().all().all():
    #     return None
            
    for i, component in enumerate(components):
        axs[i].plot(df['datetime'], df[component], label=component, color=colors[i])
        axs[i].axvline(x=event, color='red', linewidth=2, label='Event', linestyle='--')
        axs[i].set_ylabel(component, color='orange', rotation=90)
        axs[i].set_xlim(x_min, x_max)
        axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange')
        axs[i].grid(True, color='orange', alpha=0.3)
        axs[i].patch.set_alpha(0)  # Make subplot background transparent
        
        for spine in axs[i].spines.values():
            spine.set_color('orange')
        
        axs[i].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
        axs[i].xaxis.set_major_locator(mdates.HourLocator(interval=1))
        axs[i].tick_params(axis='both', colors='orange')

    plt.setp(axs[-1].xaxis.get_majorticklabels(), rotation=45)
    axs[-1].set_xlabel('Hours', color='orange')
    fig.suptitle(f'Time Series of Components with Event Marks\n{subtitle}', fontsize=12, color='orange')
    
    plt.tight_layout()
    #plt.subplots_adjust(top=0.85)
    plt.subplots_adjust(top=0.85, right=0.85, left=0.1)


    if save_path:
        fig.savefig(save_path, transparent=True)
        plt.close(fig)
        return save_path
    else:
        return fig


def batch_requests(stations, dataset, lon, lat, date, distance=100):
    results = {"station": [], "data": [], "image": [], "custom_image": []}
    all_data = []
    all_event_times = []

    for lon_, lat_, date_ in dataset[[lon, lat, date]].values:
        test_lat_lon = (lat_, lon_)
        try:
            str_date = pd.to_datetime(date_).strftime('%Y-%m-%dT%H:%M:%S')
        except:
            str_date = date_
        twelve_hours = pd.Timedelta(hours=12)
        forty_eight_hours = pd.Timedelta(hours=48)
        try:
            str_date_start = (pd.to_datetime(str_date) - twelve_hours).strftime('%Y-%m-%dT%H:%M:%S')
            str_date_end = (pd.to_datetime(str_date) + forty_eight_hours).strftime('%Y-%m-%dT%H:%M:%S')
        except Exception as e:
            print(f"Error: {e}")
            pass
        
        try:
            new_dataset = compare_stations(test_lat_lon, stations, distance=distance, closest=True)
            station_name = new_dataset['Name']
            station_distance = new_dataset['Distance']
            test_ = get_data(new_dataset.iloc[0]['IagaCode'], str_date_start, str_date_end)

            if test_ and any(test_.get(key) for key in ['X', 'Y', 'Z', 'S']):
                plotted = pd.DataFrame({
                    'datetime': test_['datetime'],
                    'X': test_.get('X', []),
                    'Y': test_.get('Y', []),
                    'Z': test_.get('Z', []),
                    'S': test_.get('S', []),
                })
                
                if plotted[['X', 'Y', 'Z', 'S']].any().any():
                    all_data.append(plotted)
                    all_event_times.append(pd.to_datetime(date_))
                    additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\nDistance: {round(station_distance.values[0], 2)} km"
                    fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle=additional_data)
                    with st.status(f'Magnetic Data: {date_}', expanded=False) as status:
                        st.pyplot(fig)
                        status.update(f'Magnetic Data: {date_} - Finished!')
                else:
                    print(f"No data for X, Y, Z, or S for date: {date_}")
        except Exception as e:
            #print(f"An error occurred: {e}")
            pass

            # if test_:
            #     results["station"].append(new_dataset.iloc[0]['IagaCode'])
            #     results["data"].append(test_)
            #     plotted = pd.DataFrame({
            #         'datetime': test_['datetime'],
            #         'X': test_['X'],
            #         'Y': test_['Y'],
            #         'Z': test_['Z'],
            #         'S': test_['S'],
            #     })
        #         all_data.append(plotted)
        #         all_event_times.append(pd.to_datetime(date_))
        #         # print(date_)
        #         additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\n Distance:{round(station_distance.values[0],2)} km"
        #         fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle =additional_data)
        #         with st.status(f'Magnetic Data: {date_}', expanded=False) as status:
        #             st.pyplot(fig)
        #             status.update(f'Magnetic Data: {date_} - Finished!')
        # except Exception as e:
        #     #print(f"An error occurred: {e}")
        #     pass

    if all_data:
        fig_overlapped = plot_overlapped_timeseries(all_data, all_event_times)
        display(fig_overlapped)
        plt.close(fig_overlapped)
        # fig_average = plot_average_timeseries(all_data, all_event_times)
        # st.pyplot(fig_average)
        fig_average_aligned = plot_average_timeseries_with_dtw(all_data, all_event_times)
        with st.status(f'Dynamic Time Warping Data', expanded=False) as stts:
            st.pyplot(fig_average_aligned)
    return results


df = pd.DataFrame()


# Upload dataset
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])

if uploaded_file is not None:
    if uploaded_file.name.endswith('.csv'):
        df = pd.read_csv(uploaded_file)
    else:
        df = pd.read_excel(uploaded_file)
    stations = get_stations()
    st.write("Dataset Loaded:")
    df = filter_dataframe(df)
    st.dataframe(df)

    # Select columns
    with st.form(border=True, key='Select Columns for Analysis'):
        lon_col = st.selectbox("Select Longitude Column", df.columns)
        lat_col = st.selectbox("Select Latitude Column", df.columns)
        date_col = st.selectbox("Select Date Column", df.columns)
        distance = st.number_input("Enter Distance", min_value=0, value=100)
        if st.form_submit_button("Process Data"):
            cases = clean_uap_data(df, lat_col, lon_col, date_col)
            results = batch_requests(stations, cases, lon_col, lat_col, date_col, distance=distance)