Spaces:
Sleeping
Sleeping
File size: 39,337 Bytes
6d2b558 92df087 6d2b558 92df087 6d2b558 92df087 46b302d 92df087 46b302d 92df087 46b302d 6d2b558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
import math
import pandas as pd
import numpy as np
import json
import requests
import datetime
from datetime import timedelta
from PIL import Image
# alternative to PIL
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import os
import matplotlib.dates as mdates
import seaborn as sns
from IPython.display import Image as image_display
path = os.getcwd()
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from IPython.display import display
from dateutil import parser
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import streamlit as st
if 'form_submitted' not in st.session_state:
st.session_state['form_submitted'] = False
st.title('Magnetic Correlations Dashboard')
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
plt.xticks(rotation=rotation)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
#try:
# modify = st.checkbox("Add filters on raw data")
#except:
# try:
# modify = st.checkbox("Add filters on processed data")
# except:
# try:
# modify = st.checkbox("Add filters on parsed data")
# except:
# pass
#if not modify:
# return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
#modification_container = st.container()
#with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
# Determine the most appropriate time unit for plot
time_units = {
'year': df_[column].dt.year,
'month': df_[column].dt.to_period('M'),
'day': df_[column].dt.date
}
unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))
# Group by the most appropriate time unit and count occurrences
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
grouped.columns = [column, 'count']
# Create a complete date range
if closest_to_36 == 'year':
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
elif closest_to_36 == 'month':
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
else: # day
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# Create a DataFrame with the complete date range
complete_range = pd.DataFrame({column: date_range})
# Convert the date column to the appropriate format based on closest_to_36
if closest_to_36 == 'year':
complete_range[column] = complete_range[column].dt.year
elif closest_to_36 == 'month':
complete_range[column] = complete_range[column].dt.to_period('M')
# Merge the complete range with the grouped data
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)
with st.status(f"Date Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(plot_bar(final_data, column, 'count'))
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
#st.pyplot(fig)
# now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_bar(df_, date_column, categorical_columns[0])
#st.pyplot(fig2)
with st.status(f"Date Distribution: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
def get_stations():
base_url = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetCapabilities&format=json'
response = requests.get(base_url)
data = response.json()
dataframe_stations = pd.DataFrame.from_dict(data['ObservatoryList'])
return dataframe_stations
def get_haversine_distance(lat1, lon1, lat2, lon2):
R = 6371
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = R * c
return d
def compare_stations(test_lat_lon, data_table, distance=1000, closest=False):
table_updated = pd.DataFrame()
distances = dict()
for lat,lon,names in data_table[['Latitude', 'Longitude', 'Name']].values:
harv_distance = get_haversine_distance(test_lat_lon[0], test_lat_lon[1], lat, lon)
if harv_distance < distance:
#print(f"Station {names} is at {round(harv_distance,2)} km from the test point")
table_updated = pd.concat([table_updated, data_table[data_table['Name'] == names]])
distances[names] = harv_distance
if closest:
closest_station = min(distances, key=distances.get)
#print(f"The closest station is {closest_station} at {round(distances[closest_station],2)} km")
table_updated = data_table[data_table['Name'] == closest_station]
table_updated['Distance'] = distances[closest_station]
return table_updated
def get_data(IagaCode, start_date, end_date):
try:
start_date_ = datetime.datetime.strptime(start_date, '%Y-%m-%d')
except ValueError as e:
print(f"Error: {e}")
start_date_ = pd.to_datetime(start_date)
try:
end_date_ = datetime.datetime.strptime(end_date, '%Y-%m-%d')
except ValueError as e:
print(f"Error: {e}")
end_date_ = pd.to_datetime(end_date)
duration = end_date_ - start_date_
# Define the parameters for the request
params = {
'Request': 'GetData',
'format': 'PNG',
'testObsys': '0',
'observatoryIagaCode': IagaCode,
'samplesPerDay': 'minute',
'publicationState': 'Best available',
'dataStartDate': start_date,
# make substraction
'dataDuration': duration.days,
'traceList': '1234',
'colourTraces': 'true',
'pictureSize': 'Automatic',
'dataScale': 'Automatic',
'pdfSize': '21,29.7',
}
base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json'
#base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png'
for base_url in [base_url_json]:#, base_url_img]:
response = requests.get(base_url, params=params)
if response.status_code == 200:
content_type = response.headers.get('Content-Type')
if 'image' in content_type:
# f"custom_plot_{new_dataset.iloc[0]['IagaCode']}_{str_date.replace(':', '_')}.png"
# output_image_path = "plot_image.png"
# with open(output_image_path, 'wb') as file:
# file.write(response.content)
# print(f"Image successfully saved as {output_image_path}")
# # Display the image
# img = mpimg.imread(output_image_path)
# plt.imshow(img)
# plt.axis('off') # Hide axes
# plt.show()
# img_answer = Image.open(output_image_path)
img_answer = None
else:
print(f"Unexpected content type: {content_type}")
#print("Response content:")
#print(response.content.decode('utf-8')) # Attempt to print response as text
# return json
answer = response.json()
else:
print(f"Failed to retrieve data. HTTP Status code: {response.status_code}")
print("Response content:")
print(response.content.decode('utf-8'))
return answer#, img_answer
# def get_data(IagaCode, start_date, end_date):
# # Convert dates to datetime
# try:
# start_date_ = pd.to_datetime(start_date)
# end_date_ = pd.to_datetime(end_date)
# except ValueError as e:
# print(f"Error: {e}")
# return None, None
# duration = (end_date_ - start_date_).days
# # Define the parameters for the request
# params = {
# 'Request': 'GetData',
# 'format': 'json',
# 'testObsys': '0',
# 'observatoryIagaCode': IagaCode,
# 'samplesPerDay': 'minute',
# 'publicationState': 'Best available',
# 'dataStartDate': start_date_.strftime('%Y-%m-%d'),
# 'dataDuration': duration,
# 'traceList': '1234',
# 'colourTraces': 'true',
# 'pictureSize': 'Automatic',
# 'dataScale': 'Automatic',
# 'pdfSize': '21,29.7',
# }
# base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json'
# base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png'
# try:
# # Request JSON data
# response_json = requests.get(base_url_json, params=params)
# response_json.raise_for_status() # Raises an error for bad status codes
# data = response_json.json()
# # Request Image
# params['format'] = 'png'
# response_img = requests.get(base_url_img, params=params)
# response_img.raise_for_status()
# # Save and display image if response is successful
# if 'image' in response_img.headers.get('Content-Type'):
# output_image_path = "plot_image.png"
# with open(output_image_path, 'wb') as file:
# file.write(response_img.content)
# print(f"Image successfully saved as {output_image_path}")
# img = mpimg.imread(output_image_path)
# plt.imshow(img)
# plt.axis('off')
# plt.show()
# img_answer = Image.open(output_image_path)
# else:
# img_answer = None
# return data, img_answer
# except requests.RequestException as e:
# print(f"Request failed: {e}")
# return None, None
# except ValueError as e:
# print(f"JSON decode error: {e}")
# return None, None
def clean_uap_data(dataset, lat, lon, date):
# Assuming 'nuforc' is already defined
processed = dataset[dataset[[lat, lon, date]].notnull().all(axis=1)]
# Converting 'Lat' and 'Long' columns to floats, handling errors
processed[lat] = pd.to_numeric(processed[lat], errors='coerce')
processed[lon] = pd.to_numeric(processed[lon], errors='coerce')
# if processed[date].min() < pd.to_datetime('1677-09-22'):
# processed.loc[processed[date] < pd.to_datetime('1677-09-22'), 'corrected_date'] = pd.to_datetime('1677-09-22 00:00:00')
procesed = processed[processed[date] >= '1677-09-22']
# convert date to str
#processed[date] = processed[date].astype(str)
# Dropping rows where 'Lat' or 'Long' conversion failed (i.e., became NaN)
processed = processed.dropna(subset=[lat, lon])
return processed
def plot_overlapped_timeseries(data_list, event_times, window_hours=12, save_path=None):
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
for i, component in enumerate(components):
axs[i].patch.set_alpha(0) # Make subplot background transparent
axs[i].set_ylabel(component, color='orange')
axs[i].grid(True, color='orange', alpha=0.3)
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].tick_params(axis='both', colors='orange') # Change tick color
axs[i].set_title(f'{component}', color='orange')
axs[i].set_xlabel('Time Difference from Event (hours)', color='orange')
for j, (df, event_time) in enumerate(zip(data_list, event_times)):
# Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
# Convert event_time to UTC if it has timezone info, otherwise assume it's UTC
event_time = pd.to_datetime(event_time).tz_localize(None)
# Calculate time difference from event
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 # Convert to hours
# Filter data within the specified window
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
# normalize component data
df_window[component] = (df_window[component] - df_window[component].mean()) / df_window[component].std()
axs[i].plot(df_window['time_diff'], df_window[component], color=colors[i], alpha=0.7, label=f'Event {j+1}', linewidth=1)
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
axs[i].set_xlim(-window_hours, window_hours)
#axs[i].legend(loc='upper left', bbox_to_anchor=(1, 1))
axs[-1].set_xlabel('Hours from Event', color='orange')
fig.suptitle('Overlapped Time Series of Components', fontsize=16, color='orange')
plt.tight_layout()
plt.subplots_adjust(top=0.95, right=0.85)
if save_path:
fig.savefig(save_path, transparent=True, bbox_inches='tight')
plt.close(fig)
return save_path
else:
return fig
def plot_average_timeseries(data_list, event_times, window_hours=12, save_path=None):
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
for i, component in enumerate(components):
axs[i].patch.set_alpha(0)
axs[i].set_ylabel(component, color='orange')
axs[i].grid(True, color='orange', alpha=0.3)
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].tick_params(axis='both', colors='orange')
all_data = []
time_diffs = []
for j, (df, event_time) in enumerate(zip(data_list, event_times)):
# Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
# Convert event_time to UTC if it has timezone info, otherwise assume it's UTC
event_time = pd.to_datetime(event_time).tz_localize(None)
# Calculate time difference from event
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 # Convert to hours
# Filter data within the specified window
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
# Normalize component data
df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std()
all_data.append(df_window[component].values)
time_diffs.append(df_window['time_diff'].values)
# Calculate average and standard deviation
try:
avg_data = np.mean(all_data, axis=0)
except:
avg_data = np.zeros_like(all_data[0])
try:
std_data = np.std(all_data, axis=0)
except:
std_data = np.zeros_like(avg_data)
axs[-1].set_xlabel('Hours from Event', color='orange')
fig.suptitle('Average Time Series of Components', fontsize=16, color='orange')
# Plot average line
axs[i].plot(time_diffs[0], avg_data, color=colors[i], label='Average')
# Plot standard deviation as shaded region
try:
axs[i].fill_between(time_diffs[0], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2)
except:
pass
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
axs[i].set_xlim(-window_hours, window_hours)
# orange frame, orange label legend
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
plt.tight_layout()
plt.subplots_adjust(top=0.95, right=0.85)
if save_path:
fig.savefig(save_path, transparent=True, bbox_inches='tight')
plt.close(fig)
return save_path
else:
return fig
def align_series(reference, series):
reference = reference.flatten()
series = series.flatten()
_, path = fastdtw(reference, series, dist=euclidean)
aligned = np.zeros(len(reference))
for ref_idx, series_idx in path:
aligned[ref_idx] = series[series_idx]
return aligned
def plot_average_timeseries_with_dtw(data_list, event_times, window_hours=12, save_path=None):
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange')
for i, component in enumerate(components):
axs[i].patch.set_alpha(0)
axs[i].set_ylabel(component, color='orange', rotation=90)
axs[i].grid(True, color='orange', alpha=0.3)
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].tick_params(axis='both', colors='orange')
all_aligned_data = []
reference_df = None
for j, (df, event_time) in enumerate(zip(data_list, event_times)):
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None)
event_time = pd.to_datetime(event_time).tz_localize(None)
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)]
df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std()
if reference_df is None:
reference_df = df_window
all_aligned_data.append(reference_df[component].values)
else:
try:
aligned_series = align_series(reference_df[component].values, df_window[component].values)
all_aligned_data.append(aligned_series)
except:
pass
# Calculate average and standard deviation of aligned data
all_aligned_data = np.array(all_aligned_data)
avg_data = np.mean(all_aligned_data, axis=0)
# round float to avoid sqrt errors
def calculate_std(data):
if data is not None and len(data) > 0:
data = np.array(data)
std_data = np.std(data)
return std_data
else:
return "Data is empty or not a list"
std_data = calculate_std(all_aligned_data)
# Plot average line
axs[i].plot(reference_df['time_diff'], avg_data, color=colors[i], label='Average')
# Plot standard deviation as shaded region
try:
axs[i].fill_between(reference_df['time_diff'], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2)
except TypeError as e:
#print(f"Error: {e}")
pass
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time')
axs[i].set_xlim(-window_hours, window_hours)
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange')
axs[-1].set_xlabel('Hours from Event', color='orange')
fig.suptitle('Average Time Series of Components (FastDTW Aligned)', fontsize=16, color='orange')
plt.tight_layout()
plt.subplots_adjust(top=0.85, right=0.85, left=0.1)
if save_path:
fig.savefig(save_path, transparent=True, bbox_inches='tight')
plt.close(fig)
return save_path
else:
return fig
def plot_data_custom(df, date, save_path=None, subtitle=None):
df['datetime'] = pd.to_datetime(df['datetime'])
event = pd.to_datetime(date)
window = timedelta(hours=12)
x_min = event - window
x_max = event + window
fig, axs = plt.subplots(4, 1, figsize=(12, 12), sharex=True)
fig.patch.set_alpha(0) # Make figure background transparent
components = ['X', 'Y', 'Z', 'S']
colors = ['red', 'green', 'blue', 'black']
fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange')
# if df[component].isnull().all().all():
# return None
for i, component in enumerate(components):
axs[i].plot(df['datetime'], df[component], label=component, color=colors[i])
axs[i].axvline(x=event, color='red', linewidth=2, label='Event', linestyle='--')
axs[i].set_ylabel(component, color='orange', rotation=90)
axs[i].set_xlim(x_min, x_max)
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange')
axs[i].grid(True, color='orange', alpha=0.3)
axs[i].patch.set_alpha(0) # Make subplot background transparent
for spine in axs[i].spines.values():
spine.set_color('orange')
axs[i].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
axs[i].xaxis.set_major_locator(mdates.HourLocator(interval=1))
axs[i].tick_params(axis='both', colors='orange')
plt.setp(axs[-1].xaxis.get_majorticklabels(), rotation=45)
axs[-1].set_xlabel('Hours', color='orange')
fig.suptitle(f'Time Series of Components with Event Marks\n{subtitle}', fontsize=12, color='orange')
plt.tight_layout()
#plt.subplots_adjust(top=0.85)
plt.subplots_adjust(top=0.85, right=0.85, left=0.1)
if save_path:
fig.savefig(save_path, transparent=True)
plt.close(fig)
return save_path
else:
return fig
def batch_requests(stations, dataset, lon, lat, date, distance=100):
results = {"station": [], "data": [], "image": [], "custom_image": []}
all_data = []
all_event_times = []
for lon_, lat_, date_ in dataset[[lon, lat, date]].values:
test_lat_lon = (lat_, lon_)
try:
str_date = pd.to_datetime(date_).strftime('%Y-%m-%dT%H:%M:%S')
except:
str_date = date_
twelve_hours = pd.Timedelta(hours=12)
forty_eight_hours = pd.Timedelta(hours=48)
try:
str_date_start = (pd.to_datetime(str_date) - twelve_hours).strftime('%Y-%m-%dT%H:%M:%S')
str_date_end = (pd.to_datetime(str_date) + forty_eight_hours).strftime('%Y-%m-%dT%H:%M:%S')
except Exception as e:
print(f"Error: {e}")
pass
try:
new_dataset = compare_stations(test_lat_lon, stations, distance=distance, closest=True)
station_name = new_dataset['Name']
station_distance = new_dataset['Distance']
test_ = get_data(new_dataset.iloc[0]['IagaCode'], str_date_start, str_date_end)
if test_ and any(test_.get(key) for key in ['X', 'Y', 'Z', 'S']):
plotted = pd.DataFrame({
'datetime': test_['datetime'],
'X': test_.get('X', []),
'Y': test_.get('Y', []),
'Z': test_.get('Z', []),
'S': test_.get('S', []),
})
if plotted[['X', 'Y', 'Z', 'S']].any().any():
all_data.append(plotted)
all_event_times.append(pd.to_datetime(date_))
additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\nDistance: {round(station_distance.values[0], 2)} km"
fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle=additional_data)
with st.status(f'Magnetic Data: {date_}', expanded=False) as status:
st.pyplot(fig)
status.update(f'Magnetic Data: {date_} - Finished!')
else:
print(f"No data for X, Y, Z, or S for date: {date_}")
except Exception as e:
#print(f"An error occurred: {e}")
pass
# if test_:
# results["station"].append(new_dataset.iloc[0]['IagaCode'])
# results["data"].append(test_)
# plotted = pd.DataFrame({
# 'datetime': test_['datetime'],
# 'X': test_['X'],
# 'Y': test_['Y'],
# 'Z': test_['Z'],
# 'S': test_['S'],
# })
# all_data.append(plotted)
# all_event_times.append(pd.to_datetime(date_))
# # print(date_)
# additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\n Distance:{round(station_distance.values[0],2)} km"
# fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle =additional_data)
# with st.status(f'Magnetic Data: {date_}', expanded=False) as status:
# st.pyplot(fig)
# status.update(f'Magnetic Data: {date_} - Finished!')
# except Exception as e:
# #print(f"An error occurred: {e}")
# pass
if all_data:
fig_overlapped = plot_overlapped_timeseries(all_data, all_event_times)
display(fig_overlapped)
plt.close(fig_overlapped)
# fig_average = plot_average_timeseries(all_data, all_event_times)
# st.pyplot(fig_average)
fig_average_aligned = plot_average_timeseries_with_dtw(all_data, all_event_times)
with st.status(f'Dynamic Time Warping Data', expanded=False) as stts:
st.pyplot(fig_average_aligned)
return results
df = pd.DataFrame()
# Upload dataset
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
if uploaded_file is not None:
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
stations = get_stations()
st.write("Dataset Loaded:")
df = filter_dataframe(df)
st.dataframe(df)
# Select columns
with st.form(border=True, key='Select Columns for Analysis'):
lon_col = st.selectbox("Select Longitude Column", df.columns)
lat_col = st.selectbox("Select Latitude Column", df.columns)
date_col = st.selectbox("Select Date Column", df.columns)
distance = st.number_input("Enter Distance", min_value=0, value=100)
if st.form_submit_button("Process Data"):
cases = clean_uap_data(df, lat_col, lon_col, date_col)
results = batch_requests(stations, cases, lon_col, lat_col, date_col, distance=distance)
|