File size: 13,523 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import math
import numpy as np
import torch


def cubic(x):
    """cubic function used for calculate_weights_indices."""
    absx = torch.abs(x)
    absx2 = absx**2
    absx3 = absx**3
    return (1.5 * absx3 - 2.5 * absx2 + 1) * (
        (absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) *
                                                                                     (absx <= 2)).type_as(absx))


def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
    """Calculate weights and indices, used for imresize function.

    Args:
        in_length (int): Input length.
        out_length (int): Output length.
        scale (float): Scale factor.
        kernel_width (int): Kernel width.
        antialisaing (bool): Whether to apply anti-aliasing when downsampling.
    """

    if (scale < 1) and antialiasing:
        # Use a modified kernel (larger kernel width) to simultaneously
        # interpolate and antialias
        kernel_width = kernel_width / scale

    # Output-space coordinates
    x = torch.linspace(1, out_length, out_length)

    # Input-space coordinates. Calculate the inverse mapping such that 0.5
    # in output space maps to 0.5 in input space, and 0.5 + scale in output
    # space maps to 1.5 in input space.
    u = x / scale + 0.5 * (1 - 1 / scale)

    # What is the left-most pixel that can be involved in the computation?
    left = torch.floor(u - kernel_width / 2)

    # What is the maximum number of pixels that can be involved in the
    # computation?  Note: it's OK to use an extra pixel here; if the
    # corresponding weights are all zero, it will be eliminated at the end
    # of this function.
    p = math.ceil(kernel_width) + 2

    # The indices of the input pixels involved in computing the k-th output
    # pixel are in row k of the indices matrix.
    indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
        out_length, p)

    # The weights used to compute the k-th output pixel are in row k of the
    # weights matrix.
    distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices

    # apply cubic kernel
    if (scale < 1) and antialiasing:
        weights = scale * cubic(distance_to_center * scale)
    else:
        weights = cubic(distance_to_center)

    # Normalize the weights matrix so that each row sums to 1.
    weights_sum = torch.sum(weights, 1).view(out_length, 1)
    weights = weights / weights_sum.expand(out_length, p)

    # If a column in weights is all zero, get rid of it. only consider the
    # first and last column.
    weights_zero_tmp = torch.sum((weights == 0), 0)
    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 1, p - 2)
        weights = weights.narrow(1, 1, p - 2)
    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 0, p - 2)
        weights = weights.narrow(1, 0, p - 2)
    weights = weights.contiguous()
    indices = indices.contiguous()
    sym_len_s = -indices.min() + 1
    sym_len_e = indices.max() - in_length
    indices = indices + sym_len_s - 1
    return weights, indices, int(sym_len_s), int(sym_len_e)


@torch.no_grad()
def imresize(img, scale, antialiasing=True):
    """imresize function same as MATLAB.

    It now only supports bicubic.
    The same scale applies for both height and width.

    Args:
        img (Tensor | Numpy array):
            Tensor: Input image with shape (c, h, w), [0, 1] range.
            Numpy: Input image with shape (h, w, c), [0, 1] range.
        scale (float): Scale factor. The same scale applies for both height
            and width.
        antialisaing (bool): Whether to apply anti-aliasing when downsampling.
            Default: True.

    Returns:
        Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
    """
    if type(img).__module__ == np.__name__:  # numpy type
        numpy_type = True
        img = torch.from_numpy(img.transpose(2, 0, 1)).float()
    else:
        numpy_type = False

    in_c, in_h, in_w = img.size()
    out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale)
    kernel_width = 4
    kernel = 'cubic'

    # get weights and indices
    weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width,
                                                                             antialiasing)
    weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width,
                                                                             antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
    img_aug.narrow(1, sym_len_hs, in_h).copy_(img)

    sym_patch = img[:, :sym_len_hs, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)

    sym_patch = img[:, -sym_len_he:, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)

    out_1 = torch.FloatTensor(in_c, out_h, in_w)
    kernel_width = weights_h.size(1)
    for i in range(out_h):
        idx = int(indices_h[i][0])
        for j in range(in_c):
            out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])

    # process W dimension
    # symmetric copying
    out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
    out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)

    sym_patch = out_1[:, :, :sym_len_ws]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)

    sym_patch = out_1[:, :, -sym_len_we:]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)

    out_2 = torch.FloatTensor(in_c, out_h, out_w)
    kernel_width = weights_w.size(1)
    for i in range(out_w):
        idx = int(indices_w[i][0])
        for j in range(in_c):
            out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])

    if numpy_type:
        out_2 = out_2.numpy().transpose(1, 2, 0)
    return out_2


def rgb2ycbcr(img, y_only=False):
    """Convert a RGB image to YCbCr image.

    This function produces the same results as Matlab's `rgb2ycbcr` function.
    It implements the ITU-R BT.601 conversion for standard-definition
    television. See more details in
    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.

    It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
    In OpenCV, it implements a JPEG conversion. See more details in
    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.

    Args:
        img (ndarray): The input image. It accepts:
            1. np.uint8 type with range [0, 255];
            2. np.float32 type with range [0, 1].
        y_only (bool): Whether to only return Y channel. Default: False.

    Returns:
        ndarray: The converted YCbCr image. The output image has the same type
            and range as input image.
    """
    img_type = img.dtype
    img = _convert_input_type_range(img)
    if y_only:
        out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
    else:
        out_img = np.matmul(
            img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
    out_img = _convert_output_type_range(out_img, img_type)
    return out_img


def bgr2ycbcr(img, y_only=False):
    """Convert a BGR image to YCbCr image.

    The bgr version of rgb2ycbcr.
    It implements the ITU-R BT.601 conversion for standard-definition
    television. See more details in
    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.

    It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
    In OpenCV, it implements a JPEG conversion. See more details in
    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.

    Args:
        img (ndarray): The input image. It accepts:
            1. np.uint8 type with range [0, 255];
            2. np.float32 type with range [0, 1].
        y_only (bool): Whether to only return Y channel. Default: False.

    Returns:
        ndarray: The converted YCbCr image. The output image has the same type
            and range as input image.
    """
    img_type = img.dtype
    img = _convert_input_type_range(img)
    if y_only:
        out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
    else:
        out_img = np.matmul(
            img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
    out_img = _convert_output_type_range(out_img, img_type)
    return out_img


def ycbcr2rgb(img):
    """Convert a YCbCr image to RGB image.

    This function produces the same results as Matlab's ycbcr2rgb function.
    It implements the ITU-R BT.601 conversion for standard-definition
    television. See more details in
    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.

    It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
    In OpenCV, it implements a JPEG conversion. See more details in
    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.

    Args:
        img (ndarray): The input image. It accepts:
            1. np.uint8 type with range [0, 255];
            2. np.float32 type with range [0, 1].

    Returns:
        ndarray: The converted RGB image. The output image has the same type
            and range as input image.
    """
    img_type = img.dtype
    img = _convert_input_type_range(img) * 255
    out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
                              [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]  # noqa: E126
    out_img = _convert_output_type_range(out_img, img_type)
    return out_img


def ycbcr2bgr(img):
    """Convert a YCbCr image to BGR image.

    The bgr version of ycbcr2rgb.
    It implements the ITU-R BT.601 conversion for standard-definition
    television. See more details in
    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.

    It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
    In OpenCV, it implements a JPEG conversion. See more details in
    https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.

    Args:
        img (ndarray): The input image. It accepts:
            1. np.uint8 type with range [0, 255];
            2. np.float32 type with range [0, 1].

    Returns:
        ndarray: The converted BGR image. The output image has the same type
            and range as input image.
    """
    img_type = img.dtype
    img = _convert_input_type_range(img) * 255
    out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0],
                              [0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921]  # noqa: E126
    out_img = _convert_output_type_range(out_img, img_type)
    return out_img


def _convert_input_type_range(img):
    """Convert the type and range of the input image.

    It converts the input image to np.float32 type and range of [0, 1].
    It is mainly used for pre-processing the input image in colorspace
    convertion functions such as rgb2ycbcr and ycbcr2rgb.

    Args:
        img (ndarray): The input image. It accepts:
            1. np.uint8 type with range [0, 255];
            2. np.float32 type with range [0, 1].

    Returns:
        (ndarray): The converted image with type of np.float32 and range of
            [0, 1].
    """
    img_type = img.dtype
    img = img.astype(np.float32)
    if img_type == np.float32:
        pass
    elif img_type == np.uint8:
        img /= 255.
    else:
        raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}')
    return img


def _convert_output_type_range(img, dst_type):
    """Convert the type and range of the image according to dst_type.

    It converts the image to desired type and range. If `dst_type` is np.uint8,
    images will be converted to np.uint8 type with range [0, 255]. If
    `dst_type` is np.float32, it converts the image to np.float32 type with
    range [0, 1].
    It is mainly used for post-processing images in colorspace convertion
    functions such as rgb2ycbcr and ycbcr2rgb.

    Args:
        img (ndarray): The image to be converted with np.float32 type and
            range [0, 255].
        dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
            converts the image to np.uint8 type with range [0, 255]. If
            dst_type is np.float32, it converts the image to np.float32 type
            with range [0, 1].

    Returns:
        (ndarray): The converted image with desired type and range.
    """
    if dst_type not in (np.uint8, np.float32):
        raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}')
    if dst_type == np.uint8:
        img = img.round()
    else:
        img /= 255.
    return img.astype(dst_type)