File size: 16,239 Bytes
c59c099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import torch
from torch import nn as nn
from torch.nn import functional as F

from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer


class PCDAlignment(nn.Module):
    """Alignment module using Pyramid, Cascading and Deformable convolution
    (PCD). It is used in EDVR.

    ``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``

    Args:
        num_feat (int): Channel number of middle features. Default: 64.
        deformable_groups (int): Deformable groups. Defaults: 8.
    """

    def __init__(self, num_feat=64, deformable_groups=8):
        super(PCDAlignment, self).__init__()

        # Pyramid has three levels:
        # L3: level 3, 1/4 spatial size
        # L2: level 2, 1/2 spatial size
        # L1: level 1, original spatial size
        self.offset_conv1 = nn.ModuleDict()
        self.offset_conv2 = nn.ModuleDict()
        self.offset_conv3 = nn.ModuleDict()
        self.dcn_pack = nn.ModuleDict()
        self.feat_conv = nn.ModuleDict()

        # Pyramids
        for i in range(3, 0, -1):
            level = f'l{i}'
            self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
            if i == 3:
                self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            else:
                self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
                self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)

            if i < 3:
                self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)

        # Cascading dcn
        self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
        self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)

        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

    def forward(self, nbr_feat_l, ref_feat_l):
        """Align neighboring frame features to the reference frame features.

        Args:
            nbr_feat_l (list[Tensor]): Neighboring feature list. It
                contains three pyramid levels (L1, L2, L3),
                each with shape (b, c, h, w).
            ref_feat_l (list[Tensor]): Reference feature list. It
                contains three pyramid levels (L1, L2, L3),
                each with shape (b, c, h, w).

        Returns:
            Tensor: Aligned features.
        """
        # Pyramids
        upsampled_offset, upsampled_feat = None, None
        for i in range(3, 0, -1):
            level = f'l{i}'
            offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1)
            offset = self.lrelu(self.offset_conv1[level](offset))
            if i == 3:
                offset = self.lrelu(self.offset_conv2[level](offset))
            else:
                offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1)))
                offset = self.lrelu(self.offset_conv3[level](offset))

            feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset)
            if i < 3:
                feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1))
            if i > 1:
                feat = self.lrelu(feat)

            if i > 1:  # upsample offset and features
                # x2: when we upsample the offset, we should also enlarge
                # the magnitude.
                upsampled_offset = self.upsample(offset) * 2
                upsampled_feat = self.upsample(feat)

        # Cascading
        offset = torch.cat([feat, ref_feat_l[0]], dim=1)
        offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset))))
        feat = self.lrelu(self.cas_dcnpack(feat, offset))
        return feat


class TSAFusion(nn.Module):
    """Temporal Spatial Attention (TSA) fusion module.

    Temporal: Calculate the correlation between center frame and
        neighboring frames;
    Spatial: It has 3 pyramid levels, the attention is similar to SFT.
        (SFT: Recovering realistic texture in image super-resolution by deep
            spatial feature transform.)

    Args:
        num_feat (int): Channel number of middle features. Default: 64.
        num_frame (int): Number of frames. Default: 5.
        center_frame_idx (int): The index of center frame. Default: 2.
    """

    def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
        super(TSAFusion, self).__init__()
        self.center_frame_idx = center_frame_idx
        # temporal attention (before fusion conv)
        self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)

        # spatial attention (after fusion conv)
        self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
        self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
        self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
        self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
        self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
        self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
        self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
        self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
        self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)

        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)

    def forward(self, aligned_feat):
        """
        Args:
            aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).

        Returns:
            Tensor: Features after TSA with the shape (b, c, h, w).
        """
        b, t, c, h, w = aligned_feat.size()
        # temporal attention
        embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone())
        embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
        embedding = embedding.view(b, t, -1, h, w)  # (b, t, c, h, w)

        corr_l = []  # correlation list
        for i in range(t):
            emb_neighbor = embedding[:, i, :, :, :]
            corr = torch.sum(emb_neighbor * embedding_ref, 1)  # (b, h, w)
            corr_l.append(corr.unsqueeze(1))  # (b, 1, h, w)
        corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1))  # (b, t, h, w)
        corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
        corr_prob = corr_prob.contiguous().view(b, -1, h, w)  # (b, t*c, h, w)
        aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob

        # fusion
        feat = self.lrelu(self.feat_fusion(aligned_feat))

        # spatial attention
        attn = self.lrelu(self.spatial_attn1(aligned_feat))
        attn_max = self.max_pool(attn)
        attn_avg = self.avg_pool(attn)
        attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1)))
        # pyramid levels
        attn_level = self.lrelu(self.spatial_attn_l1(attn))
        attn_max = self.max_pool(attn_level)
        attn_avg = self.avg_pool(attn_level)
        attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1)))
        attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
        attn_level = self.upsample(attn_level)

        attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
        attn = self.lrelu(self.spatial_attn4(attn))
        attn = self.upsample(attn)
        attn = self.spatial_attn5(attn)
        attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn)))
        attn = torch.sigmoid(attn)

        # after initialization, * 2 makes (attn * 2) to be close to 1.
        feat = feat * attn * 2 + attn_add
        return feat


class PredeblurModule(nn.Module):
    """Pre-dublur module.

    Args:
        num_in_ch (int): Channel number of input image. Default: 3.
        num_feat (int): Channel number of intermediate features. Default: 64.
        hr_in (bool): Whether the input has high resolution. Default: False.
    """

    def __init__(self, num_in_ch=3, num_feat=64, hr_in=False):
        super(PredeblurModule, self).__init__()
        self.hr_in = hr_in

        self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
        if self.hr_in:
            # downsample x4 by stride conv
            self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
            self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)

        # generate feature pyramid
        self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
        self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)

        self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat)
        self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat)
        self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat)
        self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)])

        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

    def forward(self, x):
        feat_l1 = self.lrelu(self.conv_first(x))
        if self.hr_in:
            feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1))
            feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1))

        # generate feature pyramid
        feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1))
        feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2))

        feat_l3 = self.upsample(self.resblock_l3(feat_l3))
        feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3
        feat_l2 = self.upsample(self.resblock_l2_2(feat_l2))

        for i in range(2):
            feat_l1 = self.resblock_l1[i](feat_l1)
        feat_l1 = feat_l1 + feat_l2
        for i in range(2, 5):
            feat_l1 = self.resblock_l1[i](feat_l1)
        return feat_l1


@ARCH_REGISTRY.register()
class EDVR(nn.Module):
    """EDVR network structure for video super-resolution.

    Now only support X4 upsampling factor.

    ``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``

    Args:
        num_in_ch (int): Channel number of input image. Default: 3.
        num_out_ch (int): Channel number of output image. Default: 3.
        num_feat (int): Channel number of intermediate features. Default: 64.
        num_frame (int): Number of input frames. Default: 5.
        deformable_groups (int): Deformable groups. Defaults: 8.
        num_extract_block (int): Number of blocks for feature extraction.
            Default: 5.
        num_reconstruct_block (int): Number of blocks for reconstruction.
            Default: 10.
        center_frame_idx (int): The index of center frame. Frame counting from
            0. Default: Middle of input frames.
        hr_in (bool): Whether the input has high resolution. Default: False.
        with_predeblur (bool): Whether has predeblur module.
            Default: False.
        with_tsa (bool): Whether has TSA module. Default: True.
    """

    def __init__(self,
                 num_in_ch=3,
                 num_out_ch=3,
                 num_feat=64,
                 num_frame=5,
                 deformable_groups=8,
                 num_extract_block=5,
                 num_reconstruct_block=10,
                 center_frame_idx=None,
                 hr_in=False,
                 with_predeblur=False,
                 with_tsa=True):
        super(EDVR, self).__init__()
        if center_frame_idx is None:
            self.center_frame_idx = num_frame // 2
        else:
            self.center_frame_idx = center_frame_idx
        self.hr_in = hr_in
        self.with_predeblur = with_predeblur
        self.with_tsa = with_tsa

        # extract features for each frame
        if self.with_predeblur:
            self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in)
            self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1)
        else:
            self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)

        # extract pyramid features
        self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat)
        self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
        self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
        self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)

        # pcd and tsa module
        self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups)
        if self.with_tsa:
            self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx)
        else:
            self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)

        # reconstruction
        self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat)
        # upsample
        self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
        self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1)
        self.pixel_shuffle = nn.PixelShuffle(2)
        self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
        self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)

        # activation function
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

    def forward(self, x):
        b, t, c, h, w = x.size()
        if self.hr_in:
            assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.')
        else:
            assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.')

        x_center = x[:, self.center_frame_idx, :, :, :].contiguous()

        # extract features for each frame
        # L1
        if self.with_predeblur:
            feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w)))
            if self.hr_in:
                h, w = h // 4, w // 4
        else:
            feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))

        feat_l1 = self.feature_extraction(feat_l1)
        # L2
        feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
        feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
        # L3
        feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
        feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))

        feat_l1 = feat_l1.view(b, t, -1, h, w)
        feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2)
        feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4)

        # PCD alignment
        ref_feat_l = [  # reference feature list
            feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
            feat_l3[:, self.center_frame_idx, :, :, :].clone()
        ]
        aligned_feat = []
        for i in range(t):
            nbr_feat_l = [  # neighboring feature list
                feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
            ]
            aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
        aligned_feat = torch.stack(aligned_feat, dim=1)  # (b, t, c, h, w)

        if not self.with_tsa:
            aligned_feat = aligned_feat.view(b, -1, h, w)
        feat = self.fusion(aligned_feat)

        out = self.reconstruction(feat)
        out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
        out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
        out = self.lrelu(self.conv_hr(out))
        out = self.conv_last(out)
        if self.hr_in:
            base = x_center
        else:
            base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False)
        out += base
        return out