File size: 9,740 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on DINO code bases
# https://github.com/facebookresearch/dino/blob/main/visualize_attention.py
# --------------------------------------------------------'
import os
import sys
import argparse
import cv2
import random
import colorsys
import requests
from io import BytesIO

import skimage.io
from skimage.measure import find_contours
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms as pth_transforms
import numpy as np
from PIL import Image

import utils
from timm.models import create_model
import modeling_pretrain


def apply_mask(image, mask, color, alpha=0.5):
    for c in range(3):
        image[:, :, c] = image[:, :, c] * (1 - alpha * mask) + alpha * mask * color[c] * 255
    return image


def random_colors(N, bright=True):
    """
    Generate random colors.
    """
    brightness = 1.0 if bright else 0.7
    hsv = [(i / N, 1, brightness) for i in range(N)]
    colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
    random.shuffle(colors)
    return colors


def display_instances(image, mask, fname="test", figsize=(5, 5), blur=False, contour=True, alpha=0.5):
    fig = plt.figure(figsize=figsize, frameon=False)
    ax = plt.Axes(fig, [0., 0., 1., 1.])
    ax.set_axis_off()
    fig.add_axes(ax)
    ax = plt.gca()

    N = 1
    mask = mask[None, :, :]
    # Generate random colors
    colors = random_colors(N)

    # Show area outside image boundaries.
    height, width = image.shape[:2]
    margin = 0
    ax.set_ylim(height + margin, -margin)
    ax.set_xlim(-margin, width + margin)
    ax.axis('off')
    masked_image = image.astype(np.uint32).copy()
    for i in range(N):
        color = colors[i]
        _mask = mask[i]
        if blur:
            _mask = cv2.blur(_mask,(10,10))
        # Mask
        masked_image = apply_mask(masked_image, _mask, color, alpha)
        # Mask Polygon
        # Pad to ensure proper polygons for masks that touch image edges.
        if contour:
            padded_mask = np.zeros((_mask.shape[0] + 2, _mask.shape[1] + 2))
            padded_mask[1:-1, 1:-1] = _mask
            contours = find_contours(padded_mask, 0.5)
            for verts in contours:
                # Subtract the padding and flip (y, x) to (x, y)
                verts = np.fliplr(verts) - 1
                p = Polygon(verts, facecolor="none", edgecolor=color)
                ax.add_patch(p)
    ax.imshow(masked_image.astype(np.uint8), aspect='auto')
    fig.savefig(fname)
    print(f"{fname} saved.")
    return


if __name__ == '__main__':
    parser = argparse.ArgumentParser('Visualize Self-Attention maps')
    parser.add_argument('--model', default='beit_base_patch16_224_8k_vocab', type=str, help='Architecture (support only ViT atm).')
    parser.add_argument('--rel_pos_bias', action='store_true')
    parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias')
    parser.set_defaults(rel_pos_bias=True)
    parser.add_argument('--abs_pos_emb', action='store_true')
    parser.set_defaults(abs_pos_emb=False)
    parser.add_argument('--layer_scale_init_value', default=0.1, type=float, 
                        help="0.1 for base, 1e-5 for large. set 0 to disable layer scale")

    parser.add_argument('--input_size', default=480, type=int, help='Input resolution of the model.')
    parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
    parser.add_argument('--pretrained_weights', default='', type=str,
        help="Path to pretrained weights to load.")
    parser.add_argument("--checkpoint_key", default="model", type=str,
        help='Key to use in the checkpoint (example: "teacher")')
    parser.add_argument("--image_path", default=None, type=str, help="Path of the image to load.")
    parser.add_argument('--output_dir', default='../visualization', help='Path where to save visualizations.')
    parser.add_argument("--threshold", type=float, default=0.6, help="""We visualize masks
        obtained by thresholding the self-attention maps to keep xx% of the mass.""")
    parser.add_argument('--selected_row', default=8, type=int)
    parser.add_argument('--selected_col', default=8, type=int)
    args = parser.parse_args()

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = create_model(
        args.model,
        pretrained=False,
        drop_rate=0,
        drop_path_rate=0,
        attn_drop_rate=0,
        drop_block_rate=None,
        use_rel_pos_bias=args.rel_pos_bias,
        use_abs_pos_emb=args.abs_pos_emb,
        init_values=args.layer_scale_init_value,
    )

    for p in model.parameters():
        p.requires_grad = False
    model.eval()
    model.to(device)
    if os.path.isfile(args.pretrained_weights):
        state_dict = torch.load(args.pretrained_weights, map_location="cpu")
        if args.checkpoint_key is not None and args.checkpoint_key in state_dict:
            print(f"Take key {args.checkpoint_key} in provided checkpoint dict")
            state_dict = state_dict[args.checkpoint_key]
        # remove `module.` prefix
        state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
        # remove `backbone.` prefix induced by multicrop wrapper
        state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
        msg = model.load_state_dict(state_dict, strict=False)
        print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
    else:
        print("Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate.")
        print("There is no reference weights available for this model => We use random weights.")

    # open image
    if args.image_path is None:
        # user has not specified any image - we use our own image
        print("Please use the `--image_path` argument to indicate the path of the image you wish to visualize.")
        print("Since no image path have been provided, we take the first image in our paper.")
        response = requests.get("https://dl.fbaipublicfiles.com/dino/img.png")
        img = Image.open(BytesIO(response.content))
        img = img.convert('RGB')
    elif os.path.isfile(args.image_path):
        with open(args.image_path, 'rb') as f:
            img = Image.open(f)
            img = img.convert('RGB')
    else:
        print(f"Provided image path {args.image_path} is non valid.")
        sys.exit(1)
    input_size = args.input_size
    transform = pth_transforms.Compose([
        pth_transforms.Resize(input_size),
        pth_transforms.CenterCrop(input_size),
        pth_transforms.ToTensor(),
        pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
    img = transform(img)

    # make the image divisible by the patch size
    w, h = img.shape[1] - img.shape[1] % args.patch_size, img.shape[2] - img.shape[2] % args.patch_size
    img = img[:, :w, :h].unsqueeze(0)

    w_featmap = img.shape[-2] // args.patch_size
    h_featmap = img.shape[-1] // args.patch_size

    attentions = model.get_last_selfattention(img.to(device))

    bsz, nh, num_patches, _ = attentions.size()

    selected_row = args.selected_row
    selected_col = args.selected_col

    selected_index = selected_row * w_featmap + selected_col
    attentions = attentions[0, :, selected_index + 1, 1:]

    # we keep only a certain percentage of the mass
    val, idx = torch.sort(attentions)
    val /= torch.sum(val, dim=1, keepdim=True)
    cumval = torch.cumsum(val, dim=1)
    th_attn = cumval > (1 - args.threshold)
    idx2 = torch.argsort(idx)
    for head in range(nh):
        th_attn[head] = th_attn[head][idx2[head]]
    th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
    # interpolate
    th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=args.patch_size, mode="nearest")[0].cpu().numpy()

    attentions = attentions.reshape(nh, w_featmap, h_featmap)
    attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=args.patch_size, mode="nearest")[0].cpu().numpy()

    # save attentions heatmaps
    os.makedirs(args.output_dir, exist_ok=True)
    torchvision.utils.save_image(torchvision.utils.make_grid(img, normalize=True, scale_each=True), os.path.join(args.output_dir, "img.png"))
    for j in range(nh):
        fname = os.path.join(args.output_dir, "attn-head" + str(j) + ".png")
        plt.imsave(fname=fname, arr=attentions[j], format='png')
        print(f"{fname} saved.")

    image = skimage.io.imread(os.path.join(args.output_dir, "img.png"))

    select_image = skimage.io.imread(os.path.join(args.output_dir, "img.png"))

    for _x in range(4, args.patch_size - 4):
        for _y in range(4, args.patch_size - 4):
            for _ in range(3):
                x = _x + selected_row * args.patch_size
                y = _y + selected_col * args.patch_size
                select_image[x, y, _] = select_image[x, y, _] * 0.5 + [1.0, 0, 0][_] * 255.0 * 0.5

    fname = os.path.join(args.output_dir, "select.png")
    plt.imsave(fname=fname, arr=select_image, format='png')

    if args.threshold < 1.0:

        for j in range(nh):
            display_instances(image, th_attn[j], fname=os.path.join(args.output_dir, "mask_th" + str(args.threshold) + "_head" + str(j) +".png"), blur=False)