Spaces:
Sleeping
Sleeping
File size: 4,381 Bytes
667fe9d 2c1f9dd 667fe9d a092d54 85ac990 a092d54 667fe9d a092d54 667fe9d a092d54 2c1f9dd 85ac990 2c1f9dd 3854a1f 2c1f9dd a092d54 667fe9d 85ac990 a092d54 667fe9d 85ac990 a092d54 85ac990 a092d54 667fe9d 85ac990 2c1f9dd 85ac990 3854a1f 2c1f9dd 8471e78 85ac990 2c1f9dd a092d54 85ac990 2c1f9dd 85ac990 3854a1f 2c1f9dd 8471e78 85ac990 2c1f9dd 85ac990 a092d54 85ac990 2c1f9dd 85ac990 667fe9d a092d54 2c1f9dd a092d54 3854a1f a092d54 2c1f9dd a092d54 8471e78 18cc46a 8471e78 a092d54 18cc46a 2c1f9dd 18cc46a 667fe9d a092d54 5a2db0a 2c1f9dd a092d54 18cc46a 2c1f9dd 5a2db0a 2c1f9dd a092d54 18cc46a 2c1f9dd 5a2db0a 2c1f9dd 5a2db0a 2c1f9dd a092d54 5a2db0a 18cc46a 5a2db0a 2c1f9dd 5a2db0a 2c1f9dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from __future__ import annotations
import os
from typing import TYPE_CHECKING
import numpy as np
from joblib import Memory
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from app.constants import CACHE_DIR
from app.data import tokenize
if TYPE_CHECKING:
from sklearn.base import BaseEstimator
__all__ = ["train_model", "evaluate_model", "infer_model"]
def _identity(x: list[str]) -> list[str]:
"""Identity function for use in TfidfVectorizer.
Args:
x: Input data
Returns:
Unchanged input data
"""
return x
def train_model(
token_data: list[str],
label_data: list[int],
max_features: int,
folds: int = 5,
n_jobs: int = 4,
seed: int = 42,
verbose: bool = False,
) -> tuple[BaseEstimator, float]:
"""Train the sentiment analysis model.
Args:
model: Untrained model
token_data: Tokenized text data
label_data: Label data
max_features: Maximum number of features
folds: Number of cross-validation folds
n_jobs: Number of parallel jobs
seed: Random seed (None for random seed)
verbose: Whether to output additional information
Returns:
Trained model and accuracy
"""
text_train, text_test, label_train, label_test = train_test_split(
token_data,
label_data,
test_size=0.2,
random_state=seed,
)
param_distributions = {
"classifier__C": np.logspace(-4, 4, 20),
"classifier__solver": ["liblinear", "saga"],
}
model = Pipeline(
[
(
"vectorizer",
TfidfVectorizer(
max_features=max_features,
ngram_range=(1, 2),
# disable text processing
tokenizer=_identity,
preprocessor=_identity,
lowercase=False,
token_pattern=None,
),
),
(
"classifier",
LogisticRegression(
max_iter=1000,
random_state=None if seed == -1 else seed,
),
),
],
memory=Memory(CACHE_DIR, verbose=0),
verbose=verbose,
)
search = RandomizedSearchCV(
model,
param_distributions,
cv=folds,
random_state=seed,
n_jobs=n_jobs,
verbose=2 if verbose else 0,
scoring="accuracy",
n_iter=10,
)
os.environ["PYTHONWARNINGS"] = "ignore"
search.fit(text_train, label_train)
del os.environ["PYTHONWARNINGS"]
best_model = search.best_estimator_
return best_model, best_model.score(text_test, label_test)
def evaluate_model(
model: BaseEstimator,
token_data: list[str],
label_data: list[int],
folds: int = 5,
n_jobs: int = 4,
verbose: bool = False,
) -> tuple[float, float]:
"""Evaluate the model using cross-validation.
Args:
model: Trained model
token_data: Tokenized text data
label_data: Label data
folds: Number of cross-validation folds
n_jobs: Number of parallel jobs
verbose: Whether to output additional information
Returns:
Mean accuracy and standard deviation
"""
os.environ["PYTHONWARNINGS"] = "ignore"
scores = cross_val_score(
model,
token_data,
label_data,
cv=folds,
scoring="accuracy",
n_jobs=n_jobs,
verbose=2 if verbose else 0,
)
del os.environ["PYTHONWARNINGS"]
return scores.mean(), scores.std()
def infer_model(
model: BaseEstimator,
text_data: list[str],
batch_size: int = 32,
n_jobs: int = 4,
) -> list[int]:
"""Predict the sentiment of the provided text documents.
Args:
model: Trained model
text_data: Text data
batch_size: Batch size for tokenization
n_jobs: Number of parallel jobs
Returns:
Predicted sentiments
"""
tokens = tokenize(
text_data,
batch_size=batch_size,
n_jobs=n_jobs,
show_progress=False,
)
return model.predict(tokens)
|