File size: 4,936 Bytes
fff06c1
 
 
 
d0ad885
fff06c1
 
 
 
d0ad885
fff06c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0ad885
 
fff06c1
 
 
 
 
d0ad885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff06c1
d0ad885
fff06c1
 
 
d0ad885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python

from __future__ import annotations

import os

import gradio as gr
from huggingface_hub import HfApi

from constants import MODEL_LIBRARY_ORG_NAME
from inference import InferencePipeline


class InferenceUtil:
    def __init__(self, hf_token: str | None):
        self.hf_token = hf_token

    def load_hub_model_list(self) -> dict:
        api = HfApi(token=self.hf_token)
        choices = [
            info.modelId
            for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
        ]
        return gr.update(choices=choices,
                         value=choices[0] if choices else None)

    def load_model_info(self, model_id: str) -> tuple[str, str]:
        try:
            card = InferencePipeline.get_model_card(model_id, self.hf_token)
        except Exception:
            return '', ''
        base_model = getattr(card.data, 'base_model', '')
        training_prompt = getattr(card.data, 'training_prompt', '')
        return base_model, training_prompt

    def reload_model_list_and_update_model_info(self) -> tuple[dict, str, str]:
        model_list_update = self.load_hub_model_list()
        model_list = model_list_update['choices']
        model_info = self.load_model_info(model_list[0] if model_list else '')
        return model_list_update, *model_info


TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)'
HF_TOKEN = os.getenv('HF_TOKEN')
pipe = InferencePipeline(HF_TOKEN)
app = InferenceUtil(HF_TOKEN)

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(TITLE)

    with gr.Row():
        with gr.Column():
            with gr.Box():
                reload_button = gr.Button('Reload Model List')
                model_id = gr.Dropdown(label='Model ID',
                                       choices=None,
                                       value=None)
                with gr.Accordion(
                        label=
                        'Model info (Base model and prompt used for training)',
                        open=False):
                    with gr.Row():
                        base_model_used_for_training = gr.Text(
                            label='Base model', interactive=False)
                        prompt_used_for_training = gr.Text(
                            label='Training prompt', interactive=False)
            prompt = gr.Textbox(label='Prompt',
                                max_lines=1,
                                placeholder='Example: "A panda is surfing"')
            video_length = gr.Slider(label='Video length',
                                     minimum=4,
                                     maximum=12,
                                     step=1,
                                     value=8)
            fps = gr.Slider(label='FPS',
                            minimum=1,
                            maximum=12,
                            step=1,
                            value=1)
            seed = gr.Slider(label='Seed',
                             minimum=0,
                             maximum=100000,
                             step=1,
                             value=0)
            with gr.Accordion('Other Parameters', open=False):
                num_steps = gr.Slider(label='Number of Steps',
                                      minimum=0,
                                      maximum=100,
                                      step=1,
                                      value=50)
                guidance_scale = gr.Slider(label='CFG Scale',
                                           minimum=0,
                                           maximum=50,
                                           step=0.1,
                                           value=7.5)

            run_button = gr.Button('Generate')

            gr.Markdown('''
            - It takes a few minutes to download model first.
            - Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
            ''')
        with gr.Column():
            result = gr.Video(label='Result')

    reload_button.click(fn=app.reload_model_list_and_update_model_info,
                        inputs=None,
                        outputs=[
                            model_id,
                            base_model_used_for_training,
                            prompt_used_for_training,
                        ])
    model_id.change(fn=app.load_model_info,
                    inputs=model_id,
                    outputs=[
                        base_model_used_for_training,
                        prompt_used_for_training,
                    ])
    inputs = [
        model_id,
        prompt,
        video_length,
        fps,
        seed,
        num_steps,
        guidance_scale,
    ]
    prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
    run_button.click(fn=pipe.run, inputs=inputs, outputs=result)

demo.queue().launch()