File size: 7,289 Bytes
fff06c1
 
 
 
d0ad885
fff06c1
 
c4715ed
fff06c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4715ed
 
 
 
4c44f87
 
 
d0ad885
 
 
 
 
c4715ed
d0ad885
 
 
 
df638c0
 
 
 
 
 
 
 
d0ad885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df638c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa16fe
4c44f87
d0ad885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python

from __future__ import annotations

import os

import gradio as gr
import torch

from inference import InferencePipeline


class InferenceUtil:
    def __init__(self, hf_token: str | None):
        self.hf_token = hf_token

    def load_model_info(self, model_id: str) -> tuple[str, str]:
        try:
            card = InferencePipeline.get_model_card(model_id, self.hf_token)
        except Exception:
            return '', ''
        base_model = getattr(card.data, 'base_model', '')
        training_prompt = getattr(card.data, 'training_prompt', '')
        return base_model, training_prompt


DESCRIPTION = '# [Tune-A-Video](https://tuneavideo.github.io/)'
if not torch.cuda.is_available():
    DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'

CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv(
    'CACHE_EXAMPLES') == '1'

HF_TOKEN = os.getenv('HF_TOKEN')
pipe = InferencePipeline(HF_TOKEN)
app = InferenceUtil(HF_TOKEN)

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        with gr.Column():
            with gr.Box():
                model_id = gr.Dropdown(
                    label='Model ID',
                    choices=[
                        'Tune-A-Video-library/a-man-is-surfing',
                        'Tune-A-Video-library/mo-di-bear-guitar',
                        'Tune-A-Video-library/redshift-man-skiing',
                    ],
                    value='Tune-A-Video-library/a-man-is-surfing')
                with gr.Accordion(
                        label=
                        'Model info (Base model and prompt used for training)',
                        open=False):
                    with gr.Row():
                        base_model_used_for_training = gr.Text(
                            label='Base model', interactive=False)
                        prompt_used_for_training = gr.Text(
                            label='Training prompt', interactive=False)
            prompt = gr.Textbox(label='Prompt',
                                max_lines=1,
                                placeholder='Example: "A panda is surfing"')
            video_length = gr.Slider(label='Video length',
                                     minimum=4,
                                     maximum=12,
                                     step=1,
                                     value=8)
            fps = gr.Slider(label='FPS',
                            minimum=1,
                            maximum=12,
                            step=1,
                            value=1)
            seed = gr.Slider(label='Seed',
                             minimum=0,
                             maximum=100000,
                             step=1,
                             value=0)
            with gr.Accordion('Other Parameters', open=False):
                num_steps = gr.Slider(label='Number of Steps',
                                      minimum=0,
                                      maximum=100,
                                      step=1,
                                      value=50)
                guidance_scale = gr.Slider(label='CFG Scale',
                                           minimum=0,
                                           maximum=50,
                                           step=0.1,
                                           value=7.5)

            run_button = gr.Button('Generate')

            gr.Markdown('''
            - It takes a few minutes to download model first.
            - Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
            ''')
        with gr.Column():
            result = gr.Video(label='Result')
    with gr.Row():
        examples = [
            [
                'Tune-A-Video-library/a-man-is-surfing',
                'A panda is surfing.',
                8,
                1,
                3,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/a-man-is-surfing',
                'A racoon is surfing, cartoon style.',
                8,
                1,
                3,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/mo-di-bear-guitar',
                'a handsome prince is playing guitar, modern disney style.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/mo-di-bear-guitar',
                'a magical princess is playing guitar, modern disney style.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/mo-di-bear-guitar',
                'a rabbit is playing guitar, modern disney style.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/mo-di-bear-guitar',
                'a baby is playing guitar, modern disney style.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/redshift-man-skiing',
                '(redshift style) spider man is skiing.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/redshift-man-skiing',
                '(redshift style) black widow is skiing.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/redshift-man-skiing',
                '(redshift style) batman is skiing.',
                8,
                1,
                123,
                50,
                7.5,
            ],
            [
                'Tune-A-Video-library/redshift-man-skiing',
                '(redshift style) hulk is skiing.',
                8,
                1,
                123,
                50,
                7.5,
            ],
        ]
        gr.Examples(examples=examples,
                    inputs=[
                        model_id,
                        prompt,
                        video_length,
                        fps,
                        seed,
                        num_steps,
                        guidance_scale,
                    ],
                    outputs=result,
                    fn=pipe.run,
                    cache_examples=CACHE_EXAMPLES)

    model_id.change(fn=app.load_model_info,
                    inputs=model_id,
                    outputs=[
                        base_model_used_for_training,
                        prompt_used_for_training,
                    ])
    inputs = [
        model_id,
        prompt,
        video_length,
        fps,
        seed,
        num_steps,
        guidance_scale,
    ]
    prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
    run_button.click(fn=pipe.run, inputs=inputs, outputs=result)

demo.queue().launch()